
 

 

Practical Detection of Metamorphic 

Computer Viruses 

 

 

 

A Writing Project 

 Presented to  

The Faculty of the Department of Computer Science  

San Jose State University 

 

 

 

 

By 

Sharmidha Govindaraj 

 

December 2008



Approved by:  Department of Computer Science 
                                             College of Science 

           San Jose State University 
                                             San Jose, CA 

 
 
 
 
 

____________________ 

Dr. Mark Stamp 

 

 

 

 

____________________ 

Dr. Robert Chun 

 

 

 

 

____________________ 

Mr. Manikandan Veerachamy, CISCO systems 



 

Acknowledgements 

 

 

 

 

 

I would like to sincerely thank my advisor Dr. Mark Stamp for his expert guidance, 

thoughtful insights and bountiful patience without which this research is impossible. I 

would also like to thank him for introducing me to this interesting world of information 

security. I would also like to thank my committee members Dr. Robert Chun and Mr. 

Manikandan for taking time to read through my thesis and providing valuable 

comments. 

Also, I’m grateful to my loving husband Vetri for his endless love and constant 

encouragement which provided me vast energy throughout my graduate studies. 

Special thanks to my adorable little one Dharshan for adapting to my tight schedules 

and sacrificing his play-time with me. 



Abstract 

 
Metamorphic virus employs code obfuscation techniques to mutate itself. It absconds 

from signature-based detection system by modifying internal structure without 

compromising original functionality. However, it has been proved that machine learning 

technique like Hidden Markov model (HMM) can detect such viruses with high 

probability. HMM is a state machine where each state observes the input data with 

appropriate observation probability. HMM learns statistical properties of “virus features” 

rather than “signatures” and relies on such statistics to detect same family virus. Each 

HMM is trained with variants of same family viruses that are generated by same 

metamorphic engine so that HMM can detect similar viruses with high probability when 

encountered later on.  

 

Previous HMM-based detection techniques have relied on opcode sequences which are 

obtained by disassembling the binary (executable) code. Such an approach is 

impractical, since the disassembly process is slow, and this process must be applied to 

each file when scanning for viruses. In this paper, we develop a practical HMM-based 

metamorphic virus detector. We efficiently parses a Windows PE file and generate an 

approximate opcode sequence which is then used for scoring against the HMM. The 

results show that our method produce opcode sequences effectively, eliminate time-

consuming disassembling phase, reduce training time of HMM by 70% and produce 

clear separation of scores between family virus and non-members. 
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1. Introduction 

In today’s electronically connected digital world, data is stored in the connected 

storages and shared globally. Modern technology has changed the way we learn, work, 

play, and live but it does not offer luxury of high availability and accessibility without 

endangering the security and privacy of information. No matter how secure data is 

stored and accessed, information still get stolen. Everyday and every second, 

somebody in the world has his/her identity and money seized. Even worse, information 

which is worth lots of time, energy, and resources is completely wiped out by malicious 

programs causing huge loss. As we all understand, the modern digital world poses 

multifaceted vulnerabilities, a major concern is to protect data from being corrupted or 

destroyed by malicious codes.  

Malicious code is “any code added, changed, or removed from a software system to 

intentionally cause harm or subvert the system's intended function" (Jordan, 2002).  

Malicious code can be classified as virus, worm, Trojan, backdoors, and so on. 

Although all malicious codes are commonly called virus, each of the above term mean a 

type of attack the malicious code perform. For our purpose, we refer the commonly 

used term ‘virus’ to address all malicious codes in discussion for this project. Computer 

viruses have been consistently evolving. Each new generation of viruses poses new 

challenges for antivirus developers.  Fortunately, antivirus developers do rise to the 

challenges and devises a method to protect data from viruses as they show up. 

Our research focuses on a specific type of virus called metamorphic virus that uses 

obfuscating techniques to mutate itself. We will discuss further about detecting 

metamorphic viruses and enhancing one of the detection technique called Hidden 

Markov Models (HMM).  

The organization of this report is as follows; Section 2 covers viruses and their types 

with an emphasis on metamorphic virus (with examples); Section 3 covers available 
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detection techniques with an emphasis on HMM; Section 4 covers our research on 

detecting metamorphic viruses more practically and efficiently using HMM; Section 5 

covers the training and testing of HMM; and finally, Section 6 covers the discussion of 

results.  

Figure 1 shows number of new malicious threats every year.  

 

 
 
Figure 1. New Malicious Code threats  
Source:   Turner et al., 2008 

 

2.  Viruses and their types 

Viruses are malicious programs that have threatened the world of computers for about 

thirty years; and will be more challenging than ever before. As the modern viruses 

present new challenges, the antivirus community is constantly putting efforts to 

understand, learn, and develop new antivirus kits to detect and remove viruses. There 

are many types of viruses with different risk levels we have discovered.  
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Some of well known viruses are  

• Boot sector virus  

• Polymorphic virus  

• Macro virus  

• Metamorphic virus  

 

The following section explains in-depth details of metamorphic virus followed by brief 

introduction to other viruses. 

2.1  Metamorphic Virus  

Metamorphic viruses are viruses that mutate itself with the use of metamorphic engine 

that come along with virus code. These viruses are a new generation of viruses that 

escape signature detection techniques, as the shape of virus body is changed every 

time when it infects. To explain in short, metamorphic viruses mutate its body and 

change the internal structure preserving the functionality of virus.  

Such metamorphism is employed by obfuscating the code using different techniques. 

Five of the techniques are listed below (Mohammed, 2003). 

• Simple Substitution  

• Instruction Reordering  

• Dead code Insertion  

• Register usage exchange  

• Reordering subroutines  
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Figure 2 shows different shapes of virus body in each mutation (Szor, 2002).  

 

 

 
 
Figure 2.  Different forms of a metamorphic virus  
Source:   Szor, 2001 
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2.1.1  Simple Substitution  

This technique allows for the substitution of an instruction or a block of code with an 

equivalent instruction or a block of code. To accomplish this technique, the 

metamorphic generator must maintain a dictionary of instructions and their equivalents. 

An example showing how substitution is done is illustrated in figure 3 below. 

 

                         

Figure 3. Simple Substitution  
Source:   Author’s Research 

   Original Code  

 push eax 

 push ebx 

 push ecx 

 push edx 

 push esi 

 push edi 

 push ebp 

 mov ebp, 0 

 mov eax, 1 

 CPUID 

 cmp ax, 0F20h 

 jb error 

 clc 

 mov di, ax 

 mov ecx, 02Ch 

 RDMSR 

 shr eax, 16 

 and al, 00000111b 

 movzx bx, al 

 shl bx, 1 

 mov [si], bx 

error:  pop ebp 

 pop esi 

 pop edi 

 pop edx 

 pop ecx 

 pop ebx 

 pop eax 

Obfuscated by 

Simple 

Substitution  

Code obfuscated through instruction 
substitution 
  

 xor ebp, ebp 

 xor eax, eax 

 or eax, 1 

 CPUID 

 mov bx, ax 

 cmp bx, 0F20h 

 jb error 

 lahf 

 and af, 0FEh 

 sahf 

 mov di, bx 

 mov bx, 02ch 

 movzx ecx, bx 

 RDMSR 

 rol eax, 16 

 and al, 00000111b 

 xor bx, bx 

 mov bl, al 

 shl bx, 1 

 mov [si], bx 

error:  popad 
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2.1.2 Instruction Reordering  

Reordering instructions and inserting unconditional branches or jumps using GOTO 

statements is one way of metamorphism employed in virus body. Reordering can also 

be done by reordering the independent instructions in the same way compilers do. 

Figure 4 below illustrates an example of instruction reordering.      

 

 

 

 

 

Figure 4. Instruction reordering  
Source:   Author’s Research 

 

 

 

 

 

 

   Original Code  

 mov ax, 0A000h  

 mov es, ax  

 xor edi, edi  

 push 0  

 pop ds  

 mov esi, 0B000h  

 mov ecx, 64 * 1024  

 shr ecx, 02h  

 rep movsd es:[edi], ds:[esi]  

 

 

 

  Code obfuscated through instruction  

  reordering  
 mov ax, 0A000h  
 jmp s1  
      s2: jmp s3  
     s4: mov esi, 0B000h  
 jmp s5  
     s1: mov es, ax  
 xor edi, edi  
 jmp s2 

     s3: push 0 

 pop ds 

 jmp s4  
      s6: shr ecx, 02h  
 jmp s7  
      s5: mov ecx, 64 * 1024  
 jmp s6  
      s7: rep movsd  
 es:[edi], ds:[esi]  
 

 

Obfuscated by 

Instruction 

Reordering  
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2.1.3 Dead Code Insertion  

This technique inserts do-nothing or garbage instructions like NOP inside the virus 

body without altering original functionality. This is one of the easiest techniques to 

obfuscate the code section and the easiest to detect as the actual virus code is not 

rearranged. Dead code insertion is illustrated in Figure 5. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.  Dead code insertion  

Source:   Author’s Research 

 

 

 

 

   Original Code  

 mov ebx, 0F5h 

 push edx 

 push eax 

 mov eax, 75h 

 mul ebx 

 inc eax 

 adc edx, 0 

 mov ebx, eax 

 mov ecx, edx 

 pop eax 

 pop edx 

 neg ebx 

 mov [esi], ebx 

 

 

Obfuscated 

by Dead 

Code 

Insertion  

  Code obfuscated through Dead Code   

Insertion  
 mov ebx, 0F5h 

 push ebx 

 add ebx, 1 

 sub ebx, 1 

 pop ebx 

 push edx 

 push eax 

 mov eax, 75h 

 rol eax, 16 

 ror eax, 16 

 mul ebx 

 inc eax 

 add esi, 0 

 adc edx, 0 

 mov ebx, eax 

 mov ecx, edx 

 push ecx 

 mov ecx, 1 

l1:  loop l1 

 pop ecx 

 pop eax 

 jmp s1 

s1:  pop edx 

 nop 

 nop 

 neg ebx 

 xchg ebx, edx 

 xchg edx, ebx 

 mov [esi], ebx 
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2.1.4 Register Usage exchange  

Register Usage Exchange is a technique which involves changing usage of registers in 

the code without modifying the flow of code. This technique often requires adding more 

instructions for resetting or restoring the state of the registers. It seems to be more 

complex compared to other techniques as it requires knowledge of processor registers 

and supported instruction sets along with the ability to parse the binary code section 

and identify the register usage. Figure 6 below illustrates register usage exchange. 

 

  

 

 

Note:  EBX replaced with ESI and EDX replaced with EDI  

 

Figure 6.  Register usage exchange 
Source:   Author’s Research 

   Original Code  

 mov ebx, 0F5h 

 push edx 

 push eax 

 mov eax, 75h 

 mul ebx 

 inc eax 

 adc edx, 0 

 mov ebx, eax 

 mov ecx, edx 

 pop eax 

 pop edx 

 neg ebx 

 mov [esi],ebx 

Code obfuscated through register 

reassignment 

 

 push esi 

 mov esi, 0F5h 

 push edi 

 push edx 

 push eax 

 mov eax, 75h 

 mul esi 

 inc eax 

 mov edi, edx 

 adc edi, 0 

 mov esi, eax 

 mov ecx, edi 

 pop eax 

 pop edx 

 pop edi 

 neg esi 

 mov ebx, esi 

 pop esi 

 mov [esi], ebx 

Obfuscated 

by 

exchanging 

registers 
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2.1.5 Reordering Subroutines  

Obviously, using this technique, metamorphic engine reorders subroutines and thus 

changes the structure of the code. The above technique is another simple technique to 

obfuscate the shape of the virus. Reordering Subroutines is illustrated in figure 7 below. 

        

Figure 7.  Reordering subroutines 
Source:   Author’s Research 

Original Code  

 count_0s_eax PROC 

  push eax 

  push edx 

  xor ebx 

  mov ecx, 32 

  i1:  shr eax, 1 

  jc i2 

  inc ebx 

 i2:  loop i1 

  pop eax 

  pop edx 

  ret 

 count_0s_eax ENDP 

 

 multiply_ebx_by_5 PROC 

  push eax 

  push edx 

  mov eax, 5 

  mul ebx 

  mov ebx, eax 

  pop edx 

  pop eax 

  ret 

 multiply_ebx_by_5 ENDP 

 

 memory_copy PROC 

  mov esi, 0A000h 

  mov edi, 0B000h 

  mov ecx, 10 * 1024 

  rep movsd es:[edi],ds:[esi] 

 memory_copy ENDP 

 

 main  PROC 

  call count_0s_eax 

  call multiply_bx_by_5 

  call memory_copy 

  ret 

 main ENDP 

 END main 

Code obfuscated through instruction  
reordering  
 memory_copy PROC 

  mov esi, 0A000h 

  mov edi, 0B000h 

  mov ecx, 10 * 1024 

  rep movsd es:[edi],ds:[esi] 

 memory_copy ENDP 

 

 count_0s_eax PROC 

  push eax 

  push edx 

  xor ebx 

  mov ecx, 32 

 i1:  shr eax, 1 

  jc i2 

  inc ebx 

 i2:  loop i1 

  pop eax 

  pop edx 

  ret 

 count_0s_eax ENDP 

 

 main PROC 

  call count_0s_eax 

  call multiply_bx_by_5 

  call memory_copy 

  ret 

 main ENDP 

 

 multiply_ebx_by_5 PROC 

  push eax 

  push edx 

  mov eax, 5 

  mul ebx 

  mov ebx, eax 

  pop edx 

  pop eax 

  ret 

 multiply_ebx_by_5 ENDP 

 

Obfuscated by 

Reordering 

Subroutines 
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2.2  Other viruses 

One of the oldest and popular viruses from the late 1980s is boot sector virus. It 

replaces Master Boot Record (MBR) or boot sector in the hard drive with its own code. 

The boot sector is a drive sector where the Operating System (OS) boot loader lives. 

The Basic Input/Output System (BIOS) transfers control to the boot sector at the end of 

Power-On Self-Test (POST) to hand off control to the OS while booting. Infecting the 

boot sector enables the boot virus to gain the ability to take over the control whenever 

the system boots, stay hidden in memory during runtime, and perform its malicious 

activities. 

One of the other popular and challenging viruses is polymorphic virus. It uses 

encryption to get away from antivirus software that only uses simple signature detection 

technique to detect viruses. Each polymorphic virus incorporates a decryptor at the top 

of an execution flow so that the virus can decrypt the encrypted part of the code at first 

and hand off the control to decrypted virus. As a polymorphic virus usually embeds the 

decryptor at the beginning of the code section, it enables anti-virus scanners to look for 

decryptor byte patterns at the beginning of a code section and detect the virus easily. 

A Macro virus is a type of virus that mainly infects documents that are normally not 

executable. It is written in a macro language that is supported by word processors and 

email applications; this provides mechanism to embed macro programs within 

documents and execute it whenever the document is opened. Modern Antivirus 

software has the capability to detect such macro viruses. 

3.  Metamorphic virus and their detection techniques 

As metamorphic viruses employ complicated techniques, many different methods have 

been developed to detect metamorphic viruses. Each detection method has its own 

pros and cons. Some of the detection techniques described in Symantec’s white paper 

(Szor, 2001) are highlighted below. 
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Geometric Detection technique relies on “shape heuristic”; this allows to find whether a 

file is infected, or not, by learning the file structure of the virus and looking for learnt 

structures in the infected files. Often, this technique is prone to false positives as it 

simply learns the layout of the virus and does not learn about the virus at the instruction 

level.  

Code emulation is employed by creating a virtual machine which emulates the 

underlying hardware including processor, memory, and peripherals and runs an 

operating system. This technique detects viruses by running suspicious files on its guest 

virtual machine and looks for any malicious activities and patterns. The above technique 

has the ability to detect complicated viruses but it needs considerable system resources 

to create a virtual machine. 

The last and most successful technique is the Machine learning technique. This 

technique uses the concept of data mining, neural networks, and HMM to learn the 

structure of the virus at the instruction level. Though, data mining techniques produce 

more false positives, neural networks and HMM have a very low rate of false positives.  

As our research is focused on using HMM for metamorphic virus detection, HMM will be 

discussed in detail in the following section.  

 

3.1  Hidden Markov Models  

The Hidden Markov Model is a state machine with a finite set of states, each of which is 

associated with a probability distribution for certain observation symbols. This model is 

called “Hidden” Markov Model because the external observer can only see the outcome 

or the observation, and the state remains hidden. Transition between states is 

associated with transition probability and an outcome, or observation is associated with 

observation probability. HMMs are statistical learning techniques by which we can train 

the model for particular observation sequence (opcode sequence from a program). After 

training a HMM with a set of opcode sequence, the model gains the ability to detect 

similar opcode sequence in a given input.  



Sharmidha Govindaraj                                                                                                                 Metamorphic Detection               

CS298 Report                                                                   12                                                                            Fall 2008                                           
  

 

 

 

The notations used in HMM are listed below.  

 

T = the length of the observation sequence  

N = the number of states in the model  

M = the number of observation symbols  

Q = the states of the Markov process {q0, q1, . . . , qN−1  

V=set of possible observations {0, 1, . . . ,M −1}  

A = the state transition probabilities matrix  

B = the observation probability matrix  

π = the initial state distribution matrix  

O = (O0, O1, . . . ,OT−1) = observation sequence.  

λ= (A, B, π) is a HMM model  

 

Figure 8 below shows the Hidden Markov Model state transition where X is a hidden 

state and O is observation sequence which an observer can see.  

 

 

Figure 8.  Hidden Markov Model  
Source:   Stamp, M., 2004 
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4. Metamorphic detection with HMM  

Initially, HMM is trained with variants of same family viruses (viruses generated with 

same virus generation kit) during which HMM create a model for each family viruses. 

Once training is completed, HMM use that model to detect whether a given file belongs 

to particular family, or not. Before the training phase, a number of steps should be 

carried out. Let us examine the steps involved in Wong and Stamp’s (2006) work; first, 

different viruses are generated using virus generators; second, the generated viruses 

are assembled using TASM 5.0 to create executables; and finally, the executables are 

disassembled back into assembly code using IDA Pro. The above steps are illustrated 

in Figure 9 below. 

 

 

 

 
Figure 9.  Preprocessing of virus files 
Source:    Wong and Stamp (2006) 

 

 

Once disassembled, they extracted assembly opcode sequences from disassembled 

ASM files and concatenated all the opcode sequences to form a single long sequence. 

Finally, HMM was trained with the single concatenated sequence. Large collections of 

metamorphic viruses generated by virus generator kits are grouped into different data 

sets with each data set containing viruses generated by same Virus generation kit. Five 

fold cross validation is applied to a data set and further subdivided into five subsets: four 

being training sets and one being a test set; each time, a different train set and test set 

is used. Training set viruses are used for HMM training and test set viruses are used to 

test, or evaluate the performance of HMM in finding the same family virus.  
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5.  Efficient preprocessing of metamorphic virus executables  

As explained in section 4, Wong and Stamp used IDA pro, a disassembler, to 

disassemble the executables before extracting the opcode sequence for the training set. 

This disassembling step is time-consuming, inefficient, and impractical when it involves 

large numbers of virus files. An alternative method is to extract the opcode sequences 

directly from executables and use the resultant sequence to train HMM.  

Extracting opcode sequences programmatically from binary executables with no manual 

work involved is very complicated, as the binary file is raw and, in most cases, data is 

embedded within the code section. This research is focused on simplifying and 

completely removing the manual work involved in the process of creating opcode 

sequence and improving the efficiency of overall preprocessing. In our method, we 

followed three consecutive steps to preprocess a virus file. The steps involved in the 

method of preprocessing under discussion as are follows; 

1. Extracting Code section: An executable may include a number of sections 

such as code, data, and stack. As virus codes mostly lives only in code 

section, we need to extract the code section from the executable file 

discarding other sections. Though there are a lot of executable formats 

currently in use, we have taken only Portable Executable (PE) format and 

DOS executable format into consideration as these formats are most-used 

popular formats. 

2. Create opcode sequence: Analyze each virus file individually and determine 

Most Frequently Occurred (MFO) mnemonics. Find out all possible opcodes 

for MFO mnemonics and create a lookup table of MFO opcodes. The opcode 

sequence is created directly from the executable files by scanning byte by 

byte and checking if it falls into MFO opcodes by looking into the MFO 

opcode table. 

3. Concatenate opcode sequence: Finally, opcode sequences are divided into 

data set and train set. All opcode sequences of data set are concatenated to 
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form a single observation sequence. This observation sequence is used as 

train set for HMM. 

5.1 Extraction of code segments from Virus executables 

5.1.1  PE executable format  

PE executable (PE) format is a “file format for executables, object code, and DLLs, used 

in 32-bit and 64-bit versions of Windows operating systems” (Wikipedia).  I have 

focused on PE executables as it is the most used and most vulnerable format being the 

standard of windows OS. Before dealing with extraction of code segment from PE 

executables, it is essential to discuss bits and pieces of PE file format to have a good 

idea of PE executable. The subsequent sections describe PE format in detail and how 

to extract code section from PE format compliant file. The format of a PE file is shown 

figure 10 (Page 16). 

 

MS DOS header  

A PE file always starts with a MS DOS header that can be identified by a two-byte 

signature represented in ASCII as “MZ” or in hex as “0x5A4D”. Though MS-DOS header 

is comprised of many fields, e_magic and e_lfanew are the fields we are interested in.  

e_magic field contains the signature of MS DOS header and e_lfanew contains Relative 

Virtual Address (RVA) to PE header. It also includes a checksum file that can be used 

to check the integrity of the header. 

 

A MSDOS stub program is included in windows 32 and 64 bit format to display a 

message “This program cannot be run in DOS mode” when PE executables are run 

under MSDOS environment.  

 

This header was embedded in PE executables to provide backward compatibility when 

the industry was transitioning from DOS operating system to Windows operating 

system. 
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Figure 10.  PE executable format Layout  
Source:      Microsoft PE specification, 2008  
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PE header  

The MS-DOS header is followed by PE header that contains a PE signature File header 

and Optional Header. The PE signature is used to identify the PE header in a PE file 

which is  represented  by a 4-byte value in ASCII as “PE” or in hex as “0x00004550”  

Among the many fields file header contains, we are interested in two important fields. 

Those fields and their usages are explained in Table 1.  

 

Table 1.  PE file Header 

 

Source: Microsoft PE Specification, 2008 

Since optional header is not required for our purpose, the field SizeOfOptionalHeader is 

used to skip the optional header. 

  

Section Header  

Followed by the optional header is a section header that contains information about 

different sections of the file. Table 2 shows all the fields in section header. Section 

header is an array of structures where there is a structure for each section containing all 

the fields as shown in table 2 (Page 18). The name field and characteristics field are 

required to find the code section. The pointertorawdata and sizeofrawdata fields are 

used to locate and extract the code section. Table 3 (Page 20) shows section header 

characteristic flags. 
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Table 2.  PE Section Header Fields 

 

Source: Microsoft PE Specification, 2008 
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   Table 3.  PE Section Header Characteristic Flags 

 

   Source: Microsoft PE Specification, 2008 

 

 

 



Sharmidha Govindaraj                                                                                                                 Metamorphic Detection               

CS298 Report                                                                   20                                                                            Fall 2008                                           
  

 

Figure 11 shows the layout of PE executable in more detail with signatures, partitioned 

file, and optional header and pointers from section header entry to appropriate sections. 

 

 

Figure 11  Detailed Layout of PE executable 
Source:     Patriek, 2002 
 

5.1.2  PE Code Segment Extraction  

This section explains how our program extracts code segment from PE executables 

with reference to actual codes. Figure 12 (page 22) demonstrates a high level execution 

flow of code segment extraction. 

  

First, the DOS header is read and the e_magic field is checked for MS DOS signature 

“MZ” or “0x5A4D”. If the signature is valid, then we have to jump to PE header using the 

address in e_lfanew field. Once the PE header is read from the file, the signature field is 
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checked for PE signature “PE” or “0x00004550”. If the signature is valid, the file being 

processed is confirmed as a PE executable file. Once PE header is located and 

validated, the SizeOfOptionalHeader field is used to skip the optional header since 

optional header is not required for our purpose. Now we have reached the section 

header.  

 

The section header is an array of structures where there is a structure for each section 

in the file. So, to find the section header for code section, we have to compare the name 

field to “.text” or characteristics field to “0x0000020”. As the name field is not 

standardized, it is not named always “.text” and so we are checking for characteristics 

field too. According to characteristics flags, “0x0000020” mean that the section contains 

executable code. So, once the code section header is located, the field called 

PointerToRawData is used to locate the code section, and the field called 

SizeOfRawData is used to extract the code section.  

 

After completing the code segment extraction, the program is tested with different input 

exe files. All the tested files differ in size or number of code sections. Further testing is 

conducted by using HexEdit and PEdump utilities, a dumping utility for executables. The 

same exe files, which were used for testing our program is given as input to both of 

these utilities. The output of our program is binary compared with utility outputs. 

Comparison showed that our code worked flawlessly and extracted code segments 

exactly. 
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     Begin 

e_magic=”MZ” 

 

MS DOS header found Not a valid PE file 

Jump to RVA in      

e_lfanew field 

Not a valid PE file PE header found & 

file validated 

skip optional header for 

“SizeOfOptionalHeader” bytes 
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“0x0000020” 

Jump to RVA in “PointertoRaw” 

data field 

Extract code section upto 

“SizeOfRawData” bytes 
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End 
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No 

No 

Figure 12.  PE Code section extraction flow 

Source:      Author’s Research 

Signature = 

“0x00004550” 
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5.1.3  DOS executable Format 

Although DOS executables seem to be outdated, many early viruses, like G2 and 

MPCGEN, are yet in the DOS executable form. MS DOS header in DOS executables is 

exactly the same as in PE executables. For our purpose, we are required to read 

following fields: e_magic, e_cblp, e_cp and e_ip. e_magic field contains the signature 

represented in ASCII as “MZ” or in hex as “0x54AD”. This field is validated to check 

whether the given file is a valid DOS file. If DOS executable signature is found, e_cp, 

e_ip and e_cblp field are read from the header. e_ip field specify the offset where code 

segment starts. e_cp field specify number of pages in the file where each page is 512 

bytes long. e_cblp field specify number of bytes used in the last page of code segment.  

 

Once we get the values of all the above fields, size of the code segment is calculated as 

follows, 

 

  Size of code segment = e_cp*512 - (512 - e_cblp) 

 

Once size of code segment is calculated, extract the code section starting from the 

offset pointed by e_ip. 

5.2  Preprocessing of Code Segment and Opcode extraction  

As discussed earlier, Wong and Stamp used IDApro, a disassembler, to create 

disassembled ASM files and extract assembly opcode sequences from executable files.  

One of the goals for this project is to eliminate time-consuming and inefficient 

disassembling process. 

 

With the code section of virus executables in hand, we started researching for methods 

which doesn’t go through disassembling to extract assembly opcodes like MOV, ADD 

and so on. We found two obvious alternatives. First method is Most Frequently 

Occurred (MFO) opcode searching method which looks for the MFO opcodes in the 

binary executable and creates the opcode sequence of MFO opcodes. Second method 

is adding a part of disassembling code which disassembles on the fly with no manual 
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intervention and extracting only the opcodes leaving behind operands. Of these two 

alternatives, we selected the former approach because latter involves disassembling 

and our major goal is to skip disassembling. 

5.2.1  Intel x86 Instruction Set 

A brief introduction to Intel x86 instruction set is required to understand low level details 

of assembly instruction. Figure 13 shows Intel instruction format. 

 

Each instruction consists of instruction prefixes, instruction opcode bytes, MOD value, 

address displacement value and an immediate data. The format of an Intel x86 

processor architecture based instruction is shown in the figure 13 below. The assembly 

language commands corresponding to opcodes are called mnemonics. For example, 

the assembly language command ADD is a mnemonic corresponding to the opcode 

0x80. 

 

         

 

 

Figure 13.  Intel instruction format 
Source:      Intel Programmer’s Manual 
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The purpose of different fields of an instruction set is described below. 

 

1. Instruction prefixes are used as modifiers to the main command. Prefixes can be 

used to repeat string operations, to provide segment overrides, and to change 

operand and address sizes. 

2. An opcode is a one or more bytes long binary representation of assembly 

language mnemonic. While assembling, the assembler translates mnemonics to 

corresponding codes. 

3. Mod field allows specifying which of the general purpose registers or addressing 

modes are used in an instruction. 

4. Displacement field is used to provide a displacement value to an address 

referred in an instruction. For example, an ADD instruction with a reference to an 

address displaced by an offset 4056 can be represented as “ADD ax, [bp+di] + 

4056”. The displacement can be 1, 2, or 4 bytes long. 

5. An immediate operand is a constant, used as an operand in an instruction, which 

can be a 1, 2, or 4 bytes value. In an instruction, “ADD ax, 10”, immediate 

operand is 10. 

 

Some of the basic properties of such instruction are as follows: 

• The length of an assembled instruction varies based on number of fields and 

size of each field used in an instruction.  

• A single mnemonic may be translated into different opcodes based on the 

type of operands used. 

• The Mod field varies based on operand used. 

• An operand can be a register, immediate, direct or indirect memory reference 

with or without displacement. 

• Some fields are optional. 

 

There are three types of registers: 8-bit, 16-bit and 32-bit registers represented as r8, 

r16 and r32. Table 4 below shows registers available in each type. 
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Table 4. Registers and corresponding register encodings 

Register 
Encodings 

r8 r16 r32 

0      AL       AX      EAX 

1      CL      CX      ECX 

2      DL      DX      EDX 

3      BL      BX      EBX 

4      AH      SP      ESP 

5      CH      BP      EBP 

6      DH      SI      ESI 

7      BH      DI      EDI 

Source: Intel’s Programming Manual 

 

5.2.2  Preprocessing of executable code segment 

Since there are more than 100 instructions in Intel x86 instruction set, rather than 

working on all those instructions, it is inevitable to take only the Most Frequently 

Occurred (MFO) instructions into account for three important reasons:  

 

1.  It is time-consuming to collect binary opcodes covering the whole instruction 

set to form opcode table.   

2. The opcode table should be as small as possible to achieve better efficiency. 

3. Training HMM with small set of MFO instruction opcodes allows HMM to find 

patterns or features of virus effectively 
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As per Billar, only fourteen instructions in entire Intel instruction set are MFO 

instructions. Those instructions are ADD, AND, CALL, CMP, JMP, JNZ, JZ, LEA, MOV, 

PUSH, POP, RETN, TEST and XOR.  After a careful analysis, we found that using MFO 

instructions enables HMM to learn some patterns in the virus code and detect viruses 

more effectively. Figure 14 and 15 below shows the percentage of occurrence of 14 

MFO opcodes in normal and malicious files respectively. 

 

 

 

 

Figure 14.  Frequency of Occurrence of 14 MFO opcodes in normal files (in percentage) 
Source:      Billar 
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Figure 15.  Frequency of Occurrence of 14 MFO opcodes in Malwares (in percentage) 
Source:      Billar 
 

As demonstrated in figures 14 and 15, approximately 90% of total instructions used are 

14 MFO instructions. 

 

Billar et al. has also discussed the percentage of occurrence of 14 MFO opcodes in 

different categories of malwares like Viruses, Worms, Trojans and Bots. Table 5 (page 

27) shows the frequency of occurrence in percentage. 

 

As the key idea in our approach is to search for a binary instruction opcode in the code 

segment, there are possibilities for false predictions. For instance, when we search for a 

1-byte binary opcode, it may potentially hit many operands with same byte value 

resulting in false positives. In this context, false positive occurs when an operand or a 

part of an irrelevant opcode is detected as an opcode in examination. For example, one 

of the opcodes for JMP is 0xEB and one of the opcodes for SUB is 0xEB83. When an 

operand 0xEB or the part of SUB opcode is detected as JMP, it is considered as a false 

positive prediction.  
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Table 5.  Frequency of Occurrence of 14 MFO opcodes in different malwares 

Opcode Goodware Bot Trojan Virus Worm 

MOV 25.3% 34.6% 30.5% 16.1% 22.2% 

PUSH 19.5% 14.1% 15.4% 22.7% 20.7% 

CALL 8.7% 11.0% 10.0% 9.1% 8.7% 

POP 6.3% 6.8% 7.3% 7.0% 6.2% 

CMP 5.1% 3.6% 3.6% 5.9% 5.0% 

JZ 4.3% 3.3% 3.5% 4.4% 4.0% 

LEA 3.9% 2.6% 2.7% 5.5% 4.2% 

TEST 3.2% 2.6% 3.4% 3.1% 3.0% 

JMP 3.0% 3.0% 3.4% 2.7% 4.5% 

ADD 3.0% 2.5% 3.0% 3.5% 3.0% 

JNZ 2.6% 2.2% 2.6% 3.2% 3.2% 

RETN 2.2% 3.0% 3.2% 2.0% 2.3% 

XOR 1.9% 3.2% 2.7% 2.1% 2.3% 

AND        1.35% 0.5% 0.6% 1.5% 1.6% 

 

Source: Billar 

 

As discussed earlier in Intel x86 instruction set, the length of an opcode varies based on 

number of operands, types of registers and types of memory access used in an 

instruction. It may be 1, 2, or more bytes in length. As it will be time consuming to 

search for longer opcodes, after a careful analysis, it has been found that MFO 

instructions are mostly 1 or 2 bytes long. Further, we discovered that more the number 

of 2-byte opcodes used to identify MFO opcodes, better the accuracy. Due to the fact 

that the probability for an operand or data to have the same value as the two-byte 

opcode is less, we have tried to extend 1-byte opcodes to 2-byte opcodes. The 1-byte 
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opcode that can not be converted into 2-byte opcode should be located based on some 

conditions rather than looking for it indiscriminately.  We used a utility called Debug32 to 

find 2-byte alternatives for 1-byte opcode. Figure 16 below illustrates how 1-byte 

opcode is converted into 2-byte opcodes based on the type of registers used in the ADD 

instruction. 

 

                             

 

 

 

 

 

 

 

 

 

 

                   

 

 

 

 

 

 
Figure 16.   Convert 1-byte opcode to 2-byte opcode for ADD r8/m8, imm8 
Source:       Author’s Research 
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As figure 16 illustrates, in the instruction “ADD r8/m8, imm8”, ADD refers to actual 

instruction or mnemonic, r8 refers to 8-bit register, m8 refers to 8-bit memory location 

and imm8 refers to 8-bit constant. The register references in this instruction can be 

substituted with any of the seven 8-bit registers (DL, CL, BL, AH, DH, CH, BH) to extend 

1-byte opcode (0x80) into 2-byte opcodes.        

 

After careful analysis of virus source files, we decided to collect all possible opcodes for 

register and direct memory addressing instructions and only MFO opcodes for indexed 

addressing instructions. Since including all the indexing instructions in the opcode table 

introduces all possible byte values from 0x00 to 0xFF in the second byte of the opcode, 

the probability of catching false positives is high. For example, binary opcode for 

instruction “ADD r8/m8, r8” is 0x02. In general, 1-byte opcode 0x02 can be extended to 

2-byte based on type of register or memory addressing used. If we have to include all 

the indexing instructions for ADD, opcode table will require having all values from 

0x0200 to 0x02FF. With the second byte position having a possibility of any value 

between 00 to FF, any operand or sub-opcode with value 0x02 will be detected as ADD 

regardless of the second byte. 

 

Though effort has been made to change every 1-byte opcode to 2-byte, there are 

instructions whose opcodes cannot be extended. In most cases, the instructions with 

AL/AX/EAX as the first operand and imm8 as the second operand have 1-byte opcode. 

There is no way to extend these 1-byte opcodes to 2-byte.For example, binary opcode 

for instruction “ADD AL, imm8” is 0x04 which is an instruction referring the register AL 

directly. There are totally 60 such 1-byte opcodes for 14 MFO instructions of which 35 

MFO opcodes are included in the collection. The 35 opcodes collected are the 1-byte 

opcodes of CMP, CALL, JMP, JNZ, JZ, POP and PUSH. The 1-byte opcodes for 

remaining instructions are neglected to avoid False Positives (FP).Finally, we 

maintained two sets of opcode list: 1-byte opcode list and two-byte opcode list.  
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A high level flow involved in detecting MFO opcodes are shown in Figure 15 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 17.  Flow Diagram for MFO Opcode Detection 
Source:     Author’s Research 
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Since most of the 1-byte instructions are PUSH and POP, we may end up catching 

False Positives (FP) for these instructions. So, we checked for certain conditions while 

detecting PUSH instructions based on the MFO pattern found in the virus assembly 

files. The pattern found for PUSH instruction is that PUSH is always followed by another 

PUSH or POP instruction. So, whenever 1-byte PUSH opcode is detected, the 

subsequent byte is checked for PUSH or POP. If the subsequent byte is detected as 

PUSH or POP, both of the bytes are added to observation sequence. Otherwise, both 

bytes are skipped. 

 

In addition to PUSH and POP, we added conditions to detect 1-byte JMP. We noticed 

more FP for JMP because whenever our algorithm comes across 2-byte SUB, it is 

detected as JMP because both instructions are sharing a common opcode. In this case, 

let us consider the 1-byte opcodes 0xEB and 0xE9 for JMP and two-byte opcodes 

0xEB83 and 0xE983 for SUB. As you notice here, both of the instructions are sharing 

the same opcode 0xEB and 0xE9. To avoid such false positives, whenever we 

encounter 0xEB and 0xE9, the consecutive byte is checked for 0x83. If the consecutive 

byte is detected as 0x83, both of the bytes are skipped. Otherwise, 1-byte 0xEB or 0xE9 

is written as JMP in the observation sequence. 

 

Using our algorithm, the generated opcode sequence for each virus file was 95% 

accurate with 5% being FP. It means that 20 out of 450 opcodes in the opcode 

sequence are FP. 

5.3  Creating Opcode sequence 

To create opcode sequences, an input set is formed with executables of virus. Input set 

is divided into three sets consisting of family viruses, non-family viruses and normal 

files. The virus generated by a same generator belongs to the same family and is 

referred as family virus. In contrast, virus generated by different generator belongs to 

different family and is referred as non-family virus. Family viruses are named as 

“NGVCKexes” consisting of 200 metamorphic virus variants generated by Next 

Generation Virus Creation Kit (NGVCK) generator. Non- Family viruses are named as 
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“OtherExes” consisting of 25 virus generated by Second Generation virus Generator 

(G2) and Mass Code Generator (MPCGEN). It includes 

 

• 15 virus variants generated by Second Generation virus generator (G2) 

version 0.70a released in January 1993 representing non-family virus 

• 10 virus variants generated by Mass Code Generator (MPCGEN) version 1.0 

released in 1993 representing non family virus 

 

The normal files are 40 random utility executables collected from Cygwin DLL (version 

1.5.25). 

 

Wong and Stamp collected 10 G2, 10 VCL32 and 5 MPCGEN as non-family virus. 

VCL32 generated files has some properties that doesn’t allow us to include it as input 

set for our program. VCL32 generated files have all the function definitions inside data 

sections and only function calls in code section. Due to the reason that code section is 

same in all VCL32 virus executables and our program extracts only the code section to 

extract opcode sequences, we have not considered VCL32 files.  

 

Once an input set is created, it is given as input to “create_obs.exe” program where 

“Obs” stands for observation sequence or opcode sequence. The output of this program 

is the data set and the compare set. A data set of 200 individual files each consisting of 

corresponding opcode sequence is created and a compare set of 65 individual non-

family viruses and normal files consisting of corresponding opcode sequence is created. 
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5.4  Training and Testing HMM 

Training and testing followed the same methodology of (Wong, 2006).  Five-fold cross 

validation is applied to the data set and divided into train set and test set. So, train set 

consists of 160 virus opcode sequence (four subsets each with 40 viruses) and test set 

(one subset) consists of 40 virus opcode sequence. Each time, a different test set is 

selected and other four subsets are used as train set. This process is repeated five 

times.  The length of each train file in data set ranges from 395 to 445 with an average 

of 420. So, the typical length of concatenated 160 opcode sequence is in the range of 

65,450 to 65,650 with an average of 65,550.   

 

Once HMM is trained with the concatenated opcode sequence, a model is created for 

every train set.  After training, the test set and compare set is scored with corresponding 

trained model. For each file in test set and compare set, Log Likelihood Per Opcode 

(LLPO) is calculated as its score. For further details about LLPO, refer (Wong, 2006). A 

threshold value is also calculated which is an average of minimum LLPO in data set and 

maximum LLPO in compare set. The files with scores above (greater than) the 

threshold are classified as virus and files with scores below (less than) the threshold are 

classified as non- virus or non member. Training and classifying is explained in figure 

18. The steps followed in training and classifying are 

 

1. Train HMM with train set consisting of 160 opcode sequence files 

2. Score and calculate LLPO for files in test set and compare set 

3. Determine threshold value to classify member virus and non-members 

4. Continue step 1 until all test sets are scored 

 

These steps are diagrammatically shown in figure 18 (page 36). 
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Figure 18.  Training and classifying process 
Source:      Wong, 2006 

 

6. Experiment Setup and Results 

 
Section 6.1 describes the input data, platform setup and programming languages used 

in the experiment. Section 6.2 provides the results obtained using our method which 

eliminates disassembling and works on 14 MFO opcodes. Section 6.3 provides the 

results obtained using Wong’s method which uses disassembling and works on all 

opcodes in Intel instruction set. In the final section, we compare results of our method 

with results of Wong’s method to test the accuracy and efficiency of our method. 
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6.1  Experiment Setup 

As discussed earlier, input set consists of three set of executables. First set consists of 

200 NGVCK executables named as N0 to N199 (N stands for NGVCK), second set 

consists of 15 G2 executables named as G2T0 to G2T14 and 10 MPCGEN executables 

named as MPC0 to MPC9, and third set consists of 40 Cygwin executables named as 

CYG0 to CYG39.  

Extracted code section from each virus executable is collected in ICS (Individual Code 

Section) Data Set and named as cs_n0 to cs_n199.  

Data set consists of 200 NGVCK opcode sequence files named as OBSN0 to OBSN199 

(OBS stands for observation sequence and N stands for NGVCK). Compare set 

consists of 40 Cygwin opcode sequence files named as OBSC0 to OBSC39 (C stands 

for Cygwin) and 25 non-family virus opcode sequence files named as OBSV0 to 

OBSV24 (V stands for other virus). 

 

TrainFile consists of 10 files, 5 being “alphabet” file consisting of distinct opcodes in 

each train set and 5 being “in” (in stands for input) file consisting of concatenated 160 

opcode sequence in test set. Each alphabet and input file is named 160_OBSN_E0 to 

160_OBSN_E4. In the file name, 160 stands for number of opcode sequences being 

concatenated, OBS stands for observation sequence, N stands for NGVCK and E0 

stands for excluded set 0 which is the test set. 

 

With number of states N being different each time ranging from 2 to 6, let us see how 

models are named. There are 25 models created by HMM with 5 being created for each 

state N.  If a model is named as 160_OBSN_N2_E0, then 

• 160 is the number of files in train set 

• OBSN stands for NGVCK observation sequence 

• N2 stands for number of states as 2 

• E0 stands for test set 0 
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Table 6 below shows the experiment platform and programming languages used. 

 

Table 6. Experiment Setup 

Platform Windows XP 

Virus Generators NGVCK, G2 and MPCGEN 

Programming Languages C, Ruby 

Assembler & Linker TASM, TASM32, TLINK, TLINK32, MSVC 6.0, 
Ruby 

Utilities  HexDump, Debug32 

Source: Author’s Research 

  

 

6.2  Experiment Results I 

With N ranging from 2 to 6, and test sets ranging from 0 to 4, 25 models were created 

with HMM. 

Let us examine how the HMM separated family viruses from compare set files. All 25 

models made a clear separation of scores between family viruses and compare set 

files. Each model scored a data set consisting of 40 family viruses and compare set 

consisting of 40 normal files and 25 non-family viruses. Table 7 shows LLPO scores of 

40 family viruses and 40 normal files. The scores show that LLPO scores of family 

viruses are -1.9 or greater and LLPO scores of normal files are -2.1 or lower. 
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Table 7.  LLPO scores of 40 family viruses and 40 normal files (compare set) using model 

160_0BS_N2_E0. 

               NGVCK  Family  Viruses                                              Normal cygwin files 

 Virus 

Name 

          
LLPO 

 Virus 

Name 

          
LLPO 

 File 
Name 

          
LLPO 

 File 
Name 

          
LLPO 

OBSN0 

      

OBSN1 

      

OBSN2 

      

OBSN3 

      

OBSN4 

      

OBSN5  

      

OBSN6 

      

OBSN7 

      

OBSN8 

      

OBSN9 

      

OBSN10 

      

OBSN11 

      

OBSN12 

      

OBSN13 

      

OBSN14 

      

OBSN15 

      

OBSN16 

      

OBSN17 

      

OBSN18 

     

OBSN19 

-1.91341 

-1.91630 

-1.94792 

-1.78941 

-1.81915 

-1.88139 

-1.89580 

-1.85012 

-1.86159 

-1.91538 

-1.83419 

-1.78523 

-1.88537 

-1.82211 

-1.90262 

-1.91341 

-1.87386 

-1.81544 

-1.91167 

-1.90808 

OBSN20 

      

OBSN21 

      

OBSN22 

      

OBSN23 

      

OBSN24 

      

OBSN25  

      

OBSN26 

      

OBSN27 

      

OBSN28 

      

OBSN29 

 

OBSN30 

 

OBSN31 

 

OBSN32 

 

OBSN33 

 

OBSN34 

 

OBSN35 

 

OBSN36 

 

OBSN37 

 

OBSN38 

 

OBSN39 
     

 

-1.85286 

-1.85252 

-1.87886 

-1.94889 

-1.91749 

-1.84351 

-1.82954 

-1.87690 

-1.85007 

-1.89606 

-1.93708 

-1.87644 

-1.80577 

-1.84254 

-1.86094 

-1.92944 

-1.90475 

-1.82279 

-1.86641 

-1.89339 

    OBSV0 

    OBSV1 

    OBSV2 

    OBSV3 

    OBSV4 

    OBSV5  

    OBSV6 

    OBSV7 

    OBSV8 

    OBSV9 

    OBSV10 

    OBSV11 

    OBSV12 

    OBSV13 

    OBSV14 

    OBSV15 

    OBSV16 

    OBSV17 

    OBSV18 

    OBSV19 

      

 

-2.15787 

 

-2.10833 

 

-2.48227 

 

-2.49157 

 

-2.39297 

 

-2.53091 

 

-2.75892 

 

-2.75575 

 

-2.48225 

 

-2.46713 

 

-2.48225 

 

-2.46713 

 

-2.37040 

 

-2.71943 

 

-2.71957 

 

-2.49580 

 

-2.51546 

 

-2.39297 

 

-2.71439 

 

-2.44965 

OBSV20 

OBSV21 

OBSV22 

OBSV23 

OBSV24      

OBSV25      

OBSV26 

OBSV27 

OBSV28 

OBSV29 

OBSV30 

OBSV31 

OBSV32 

OBSV34     

OBSV34 

OBSV35 

OBSV36      

OBSV37 

OBSV38 

OBSV39 

 

-2.52410 

 

-2.58423 

 

-2.42321 

 

-2.44344 

 

-2.51328 

 

-2.63752 

 

-2.21347 

 

-2.46925 

 

-2.54372 

 

-2.46418 

 

-2.50300 

 

-2.85430 

 

-2.47473 

 

-2.24818 

 

-2.49244 

 

-2.49583 

 

-2.69585 

 

-2.49893 

 

-2.53286 

 

-2.56675 

 

Source: Author 
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Figure 19 below shows the scores of test set 1 and scores of compare set files for 

model with three states; i.e., N=3 . There is a clear distinction of scores between family 

and non-family viruses. Two of the normal files have scores closer to family virus scores 

but doesn’t interleave the family virus scores.  
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Figure 19.  Log Likelihood per Opcode (LLPO) of family viruses, non-family viruses and normal 
files  
Source:      Author’s Research 

 

 

The score results shown in the above diagram is the typical range of scores we 

obtained for all models. Refer Appendix B to view the graphs for all states.  The overall 

results show that HMM is able to separate the family viruses from normal files and non-

family viruses regardless of number of states. 
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To classify a file as family virus or non-member, we need to determine a cutoff or 

threshold value. The files which are scored greater than threshold are considered as 

family viruses and those which are scored lower than threshold is considered as non-

members. Threshold is calculated as the average of minimum score of family virus and 

maximum score of non member files. 

 

    Threshold = (MinDataLog + MaxCompareLog)/2 

where 

 MinDataLog is the minimum score of family virus 

 MaxCompareLog is the maximum score of non member files 

 

If score of a family virus is lower than threshold, it results in False Negative (FN) 

prediction because a family virus is classified as non-member file. In other hand, if score 

of a non-member file is greater than threshold, it results in False Positive (FP) prediction 

because a non-member file is classified as family virus. 

 

Table 8 shows the minimum score of NGVCK family viruses, maximum score of non-

member files and corresponding threshold assigned by each model. There are 25 

different scores corresponding to 25 models. Two greatest and lowest thresholds are 

marked bold in Table 8. 
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Table 8. Minimum score of NGVCK family viruses, maximum score of non-member files and 

threshold assigned by model 

Test Set Min score of family 

viruses 

Max score of non 

member files 

Threshold 

                          N = 2 

                          N = 3 

  Test Set 0        N = 4 

                          N = 5 

                          N = 6                     

-1.9488 

-1.8745 

-1.8633 

-1.8230 

-1.7994 

-2.1083 

-2.1342 

-2.0813 

-2.0417 

-2.0841 

-2.0286 

-2.0044 

-1.9723 

-1.9323 

-1.9448 

                          N = 2 

                          N = 3 

  Test Set 1        N = 4 

                          N = 5 

                          N = 6                    

-1.9252 

-1.8896 

-1.9810 

-1.9438 

-1.9645 

-2.1490 

-2.1400 

-2.1048 

-2.1413 

-2.1667 

-2.0957 

-2.0710 

-2.0429 

-2.0426 

-2.0510 

                          N = 2 

                          N = 3 

  Test Set 2        N = 4 

                          N = 5 

                          N = 6  

-1.9381 

-1.8905 

-1.8632 

-1.8381 

-1.8158 

-2.1456 

-2.1396 

-2.1055 

-2.1418 

-2.1345 

-2.0438 

-2.0151 

-1.9843 

-1.9900 

-1.9752 

                          N = 2 

                          N = 3 

  Test Set 3        N = 4 

                          N = 5 

                          N = 6  

-1.9289 

-1.8661 

-1.8496 

-1.8311 

-1.8158 

-2.1429 

-2.1337 

-2.0998 

-2.1361 

-2.1411 

-2.0359 

-1.9999 

-1.9747 

-1.9836 

-1.9785 

                          N = 2 

                          N = 3 

  Test Set 4        N = 4 

                          N = 5 

                          N = 6  

-2.0463 

-1.9836 

-1.9500 

-1.9185 

-1.9368 

-2.1441 

-2.1357 

-2.1000 

-2.1362 

-2.1457 

-2.0952 

-2.0596 

-2.0250 

-2.0274 

-2.0413 

Source: Author’s Research 
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A single threshold should be determined from the 25 thresholds assigned by the model. 

The determined threshold will act as a cutoff point for all the model scores. If the 

determined threshold is too small, FP rate will be increased. If the determined threshold 

is too large, FN rate will be increased. The final threshold which is greater than all non-

member files and lower than all family viruses will avoid more FP and FN.  We 

experimented with four different threshold values. The corresponding false prediction 

rate can be viewed in Table 9 (page 50). The thresholds used for the experiment are   

-1.93, -1.94, -2.07, -2.09. When the threshold is as large as -1.93, there are 15 FN. So, 

only 25 of 40 family viruses are classified as family viruses and remaining 15 is 

classified as normal file. Of the four thresholds used, only -2.09 and -2.07 results in 

detection rate greater than 95%. -2.07 is considered as final threshold because the 

number of false prediction is as low as 2 when compared to 4 for -2.09. The above false 

prediction is FP resulting in classification of 2 non-member files as family viruses. Since 

there are no FN when threshold is set to -2.07, detection rate is determined as 1.0000 

where  

   Detection Rate = TP / #FV 

where  

 TP - True Positives which means number of family viruses classified as   family 

viruses 

 #FV - Total number of family viruses 

In the above case where threshold is -2.07, all 40 family viruses are classified as family 

viruses. So the detection rate is 1.000. 
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Table 9. Thresholds and False Predictions 

Test Set -1.93 -1.94 -2.07 -2.09 

 FP FN Detect  

Rate 

FP FN Detect  

Rate 

FP FN Detect 

Rate 

FP FN Detect 

Rate 

                  Test Set 0 

                  Test Set 1       

  N = 2       Test Set 2 

                  Test Set 3 

                  Test Set 4                                         

0 

0 

0 

0 

0 

3 

0 

0 

0 

0 

0.925 

1.000 

1.000 

1.000 

1.000 

0 

0 

0 

0 

0 

2 

0 

0 

0 

0 

0.95 

1.000 

1.000 

1.000 

1.000 

0 

0 

0 

2 

0 

0 

0 

0 

0 

0 

1.000 

1.000 

1.000 

1.000 

1.000 

0 

0 

1 

2 

1 

0 

0 

0 

0 

0 

1.000 

1.000 

1.000 

1.000 

1.000 

                  Test Set 0 

                  Test Set 1       

  N = 3       Test Set 2 

                  Test Set 3 

                  Test Set 4                    

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

0.975 

0.975 

0.975 

0.975 

0.975 

0 

0 

0 

0 

0 

1 

1 

1 

0 

1 

0.975 

0.975 

0.975 

1.000 

0.975 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1.000 

1.000 

1.000 

1.000 

1.000 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1.000 

1.000 

1.000 

1.000 

1.000 

                  Test Set 0 

                  Test Set 1       

  N = 4       Test Set 2 

                  Test Set 3 

                  Test Set 4                    

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0.975 

1.000 

1.000 

1.000 

1.000 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1.000 

1.000 

1.000 

1.000 

1.000 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1.000 

1.000 

1.000 

1.000 

1.000 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1.000 

1.000 

1.000 

1.000 

1.000 

                  Test Set 0 

                  Test Set 1       

  N = 5       Test Set 2 

                  Test Set 3 

                  Test Set 4                    

0 

0 

0 

0 

0 

2 

0 

0 

0 

0 

0.95 

1.000 

1.000 

1.000 

1.000 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1.000 

1.000 

1.000 

1.000 

1.000 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1.000 

1.000 

1.000 

1.000 

1.000 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1.000 

1.000 

1.000 

1.000 

1.000 

                  Test Set 0 

                  Test Set 1       

  N = 6       Test Set 2 

                  Test Set 3 

                  Test Set 4                    

0 

0 

0 

0 

0 

3 

0 

1 

0 

1 

0.925 

1.000 

0.975 

1.000 

0.975 

0 

0 

0 

0 

0 

1 

0 

1 

0 

0 

0.975 

1.000 

0.975 

1.000 

1.000 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1.000 

1.000 

1.000 

1.000 

1.000 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1.000 

1.000 

1.000 

1.000 

1.000 

Source: Author’s Research 
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Now, let us examine the training time of HMM to train each model. By default, HMM is 

trained  for 800 iterations. The running time of each iteration depends on number of 

states N and length of observation sequence T. In our experiment, value of N ranges 

from 2 to 6 and average observation sequence length is 65,450. The training time of 

HMM ranges from 31 seconds for N =2 to 18 minutes for N = 6. Figure 20 below shows 

the training time taken in seconds to create models with N ranging from 2 to 6. 

 

 

 

 
Figure 20. Training time of 25 models for 800 iterations 
Source:     Author’s Research 
 

 

Eventually, the trained model creates A, B and Pi matrices where A matrix is the state 

transition probability, B matrix is the observation probability and Pi is the initial state 

distribution. To examine the features of a virus, HMM observes the observation 

sequence and plot the values in the B matrix. So, after a model is trained, HMM assigns 

probability of occurrence of each opcode in particular state which can be viewed in B 

matrix.  Table 10 (page 52) shows transpose of B matrix for 2 states and test set 2.  
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Table 10. Transposed B matrix for N = 2 and Test set 2 

Opcode State 0                                State 1 

 
 

 

Call 
add 
cmp 
jz 
lea 
mov 
xor 
jnz 
jmp 
pop 
push 
retn 
and 
test 

0.04139156206336                    0.10697308319445 
0.03274170541118                    0.19756946116809 
0.00712020350956                    0.0329235076862 
0                                              0.0329235076852 
0.03349106402365                    0.02797364747966 
0.7834975094335                    0.19927252251573 
0                                                 0.02828160382626 
0                                                 0.04193156798704 
0                                                 0.05445961728529 
0                                                 0.03281600972899 
0.06910259796872                    0.11012487167077 
0.03265535759005                    0.06104544906463 
0                                                 0.01339285867145 
0                                                 0.0169689229576 

Source: Author’s Research 

 

In table 10 above, any state with zero value means that the corresponding opcode 

doesn’t belong to that state. For example, opcode jz has zero value in state 0 and non-

zero value in state 1 which implies that jz occurs only in state 1. 

 

In figure 21, the above table is plotted. The graph shows that opcode MOV occurs 

mostly in state 0. Opcodes XOR, POP, AND, TEST, JZ, JNZ and JMP occur only in 

state 1 and have zero probability in state 0. Rest of the opcodes occurs in both states.  

 

 

 



Sharmidha Govindaraj                                                                                                                 Metamorphic Detection               

CS298 Report                                                                   47                                                                            Fall 2008                                           
  

 

  
Figure 21.  Probability distribution of observation symbols in each state for N = 2 and test set 2 
Source:      Author’s Research 

 

6.3  Experiment Results II from Wong’s method 

As discussed earlier, Wong’s method require disassembled executables as input. First, 

all input executables should be disassembled. Using IdaPro, we disassembled the 

same set of input files (200 NGVCK, 40 Cygwin, 15 G2 and 10 MPCGEN executable 

files) used in our method and created respective asm files. We used the generated asm 

files as input to the HMM. The typical observation sequence length of concatenated 

opcode sequence ranges from 91,830 to 92,430 with an average of 92,130. 

 

With N ranging from 2 to 6, and test sets ranging from 0 to 4, 25 models were created 

with HMM. Let us examine how the HMM separated family viruses from compare set 

files. All 25 models made a clear separation of scores between family viruses and 

compare set files. Each model scored a data set consisting of 40 family viruses and 

compare set consisting of 40 normal files and 25 non-family viruses. 
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Test Set 1, N=3
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Figure 22 shows the scores of test set 1 and scores of compare set files for model with 

three states; i.e., N=3 . There is no clear distinction and some interleaving of scores 

between family viruses and normal files. About three scores of normal files are 

interleaving with scores of family viruses. 

Figure 22.  Log Likelihood per Opcode (LLPO) of family viruses, non-family viruses and normal    
files  
Source:     Author’s Research 

  

HMM is not able to determine a well defined threshold for any of the models, since the 

maximum score of compare set is lesser than the minimum score of data set. For 

example, for the model with N=3 and test set 1, the minimum score of data set is -5.9 

and the maximum score of compare set is -3.0. Since, -5.9 is lesser than -3.0, it is not 

able to find threshold. Also, due to the fact that all the models have interleaving scores, 

HMM doesn’t find well defined threshold. So, after analyzing all the scores and keeping 

the detection rate greater than 95%, we determine -5.4 as the threshold. With -5.4 as 

threshold, there are 39 FP predictions and 7 FN predictions. Table 11 shows the FP and 

FN for each model. 
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Table 11. False Predictions for threshold = -5.4 

Model -5.4 

 FP FN Detection Rate 

                  Test Set 0 

                  Test Set 1       

  N = 2       Test Set 2 

                  Test Set 3 

                  Test Set 4 

1 

3 

3 

3 

3 

0 

1 

0 

0 

0 

1.000 

0.975 

1.000 

1.000 

1.000 

                  Test Set 0 

                  Test Set 1       

  N = 3       Test Set 2 

                  Test Set 3 

                  Test Set 4                    

0 

3 

3 

3 

3 

0 

1 

1 

0 

0 

1.000 

0.975 

0.975 

1.000 

1.000 

                  Test Set 0 

                  Test Set 1       

  N = 4       Test Set 2 

                  Test Set 3 

                  Test Set 4 

1 

3 

3 

3 

3 

0 

1 

0 

0 

0 

1.000 

0.975 

1.000 

1.000 

1.000 

                  Test Set 0 

                  Test Set 1       

  N = 5       Test Set 2 

                  Test Set 3 

                  Test Set 4 

1 

3 

3 

3 

3 

0 

1 

1 

0 

0 

1.000 

0.975 

0.975 

1.000 

1.000 

                  Test Set 0 

                  Test Set 1       

  N = 6       Test Set 2 

                  Test Set 3 

                  Test Set 4 

1 

3 

1 

1 

1 

0 

1 

0 

0 

0 

1.000 

0.975 

1.000 

1.000 

1.000 

Source: Author’s Research 
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The diagrammatic representation of table 11 can be viewed in figure 23. 

 

 

Figure 23.  Number of false predictions at each state N 
Source:      Author’s Research 

 

Now, let us examine the training time of HMM to train each model. In default, HMM is 

trained iteratively for 800 iterations. The run time of each iteration depends on number 

of states N and length of observation sequence T. In our experiment, value of N ranges 

from 2 to 6 and average observation sequence length is 92,130. The training time of 

HMM ranges from 5 mins for N =2 to 48 minutes For N = 6. Figure 23 shows the training 

time taken in seconds to create models with N ranging from 2 to 6. 
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 Figure 24.  Training time of 25 models for 800 iterations 
 Source:      Author’s Research 
 

 

6.4  Comparison of our method with Wong’s Method 

To determine the efficiency and accuracy of our method, our results are compared with 

Wong’s method. The observation sequence length and training time are compared in 

figures 24 and 25 (page 58) respectively. The comparison shows that our method 

produces smaller opcode sequence since we extracted only 14 MFO opcodes which 

eventually results in lesser training time. Using our method, the training time is reduced 

by 60%. So, our method shows significant improvement in efficiency.  
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Figure 25.  Comparison of opcode sequence length T in both methods 
Source:      Author’s Research 
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Figure 26.  Comparison of HMM training time in both methods 
Source:      Author’s Research 

 

 

The total HMM training time is on average 4.5 hours for our method and 14.5 hours for 

Wong’s method. Also, our program detects opcodes in the executables in less than 5 
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minutes in comparison to IDApro disassembling which takes on average 1.5 hours for 

same set of files. For the entire experiment, our method took only 4.5 hours compared 

to 16 hours for Wong’s method. In summary, the overall performance is improved by 

70% with our method when compared to Wong’s method.  

 

In addition to performance, there is a clear distinction of scores between family viruses 

and non-members in our method. With threshold set at -2.07, there are only 2 FP 

predictions and no FN predictions resulting in 100% detection rate. In Wong’s method, 

there is some interleaving of scores between family viruses and normal files. With 

threshold set at -5.4, there are 39 FP predictions and 7 FN predictions resulting in 97% 

detection rate. This shows that accuracy is significantly improved in our method when 

compared to Wong’s method. Figure 27 shows the number of false predictions in our 

method and Wong’s method. 

 

 

 

 

 

 

 

 

 

 

 

Figure 27. Comparison of False Negative Prediction 

Source:  Author’s research 

   

 

 

 



Sharmidha Govindaraj                                                                                                                 Metamorphic Detection               

CS298 Report                                                                   54                                                                            Fall 2008                                           
  

 

7. Conclusion   

Our method extracts code section from the virus binary files, detects MFO instruction 

opcodes, forms opcode sequence, trains HMM, and scores test files. After careful 

analysis of the virus files, 14 MFO instructions were identified (Billar) and corresponding 

opcodes are collected to produce opcode table. The produced opcode table was used 

in the process of forming opcode sequence. As the table is precise and concise, it helps 

to improve overall efficiency significantly. 

Our method achieved the primary goal of this work. It completely eliminated the manual 

process involved in the disassembling phase, reduced the total running time by 70%, 

and significantly improved overall efficiency.  

8. Future Work 

We extracted only the code segment from the executables. It can be expanded to 

include data segment which will be challenging as it includes data in addition to the 

function codes we are interested. Also, our opcode table consists of fewer number of 1-

byte opcodes that are searched indiscriminately resulting in ~3% false positives. It can 

be further improved by analyzing the virus assembly files and determining conditions to 

identify 1-byte opcodes. 
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Appendix B: Converged HMM Matrices 

 

Table B- 1. Coverged HMM Matrices for N = 2 and Test Set 0 

 N=2, M=14, T=65538 

 I 1.00000000000000 0.00000000000000  

A 0.97529089931559 0.02470910068450 
0.07294422965863 0.92705577034146 

 

B 

 

 

 

 

 

 

 
call 
and 
add 
mov 
cmp 
jz 
lea 
retn 
jnz 
jmp 
push 
pop 
xor 
test 

 
0.11056864271285             0.01032365432858 
0.01145967815425             0.00000000000000 
0.18800057580368             0.00039631434332 
0.21328078353347             0.95689813171848 
0.03301040979904             0.00000000000000 
0.06610252853323             0.00000000000000 
0.02880279179210             0.03238189960963 
0.06832909701597             0.00000000000000 
0.03691201145227             0.00000000000000 
0.04826955343759             0.00000000000000 
0.12836473711460             0.00000000000000 
0.02806701922270             0.00000000000000 
0.02414499033569             0.00000000000000 
0.01468718109252             0.00000000000000
  

 

Table B- 2. Coverged HMM Matrices for N = 2 and Test Set 1 

 N=2, M=14, T=65637 

I 

 

 
0.00000000000000 1.00000000000000  

 
A 
 

 
0.99023469357353 0.00976530642649  
0.00517079384893 0.99482920615105  

 

B 
 
 
 
 
 
 
 
 
 
 
 
 

 

call 
add 
cmp 
jz 
lea 
mov 
xor 
jnz 
jmp 
pop 
push 
retn 
and 
test 

  0.04138172849122 0.10732144082279  
0.03279131576133 0.19815336386213  
0.00713632659984 0.03265250124626  
0.00000000000000 0.07525014019944  
0.03353125642709 0.02783380289300  
0.78330672606554 0.20080176000483  
0.00000000000000 0.02768944552793  
0.00000000000000 0.04211587933240  
0.00000000000000 0.05519274352290  
0.00000000000000 0.03204064411089  
0.06899283786000 0.11016834858514  
0.03285980879498 0.06120574059315  
0.00000000000000 0.01328628016508  
0.00000000000000 0.01628790913408  
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Table B- 3. Coverged HMM Matrices for N = 3 and Test Set 0 

 

 

N=3, M=14, T=65538 

I 0.00000000000000 1.00000000000000 0.00000000000000  

 
A 

0.70346079377318 0.29653920622679 0.00000000000000  
0.07914393658555 0.91445966538834 0.00639639802613  
0.00962002852435 0.00000000000000 0.99037997147564  

 
B 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
call 0.18044259546229 0.08754297795188 0.04019049649330 
and 0.00448429829006 0.01540292005154 0.00000000000000 
add 0.03860749464897 0.24155284859017 0.03234418078082 
mov 0.02469929232564 0.25302357242172 0.78967988859470 
cmp 0.00315211876847 0.04250330460559 0.00707130426832 
jz 0.01007609703007 0.09340170221697 0.00000000000000 
lea 0.01364679545996 0.03187212163422 0.03343588672210 
retn 0.07481661944953 0.05715118751145 0.03145387119567 
jnz 0.00000000040173 0.05377853338374 0.00000000000000 
jmp 0.01349456618584 0.06643437646140 0.00000000000000 
push 0.49741215965854 0.00000000000000 0.06582437194508 
pop 0.13409826140688 0.00222230493117 0.00000000000000 
xor 0.00479799349001 0.03379418116171 0.00000000000000 
test 0.00027170742202 0.02131996907845 0.00000000000000 
  

 

Table B- 4. Coverged HMM Matrices for N = 3 and Test Set 1 

 

 

N=3, M=14, T=65637 

 I 1.00000000000000 0.00000000000000 0.00000000000000  

 
A 

0.70346079377318 0.29653920622679 0.00000000000000  
0.07914393658555 0.91445966538834 0.00639639802613  
0.00962002852435 0.00000000000000 0.99037997147564  

 
B 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
call 0.08867756472923 0.17378980549424 0.03999032275435 
add 0.24121738466127 0.03794667554559 0.03246059846073 
cmp 0.04101184800289 0.00177478727713 0.00711025515134 
jz 0.09241896276235 0.01063289662025 0.00000000000000 
lea 0.03188667648912 0.01347452830663 0.03362093725516 
mov 0.25488566270350 0.02044655468201 0.78988948068637 
xor 0.03378862068065 0.00468934596868 0.00000000000000 
jnz 0.05332496381131 0.00025874665049 0.00000000000000 
jmp 0.06621929897186 0.01336997690319 0.00000000000000 
pop 0.00276033294822 0.13469898314905 0.00000000000000 
push 0.00000000000000 0.50857789021476 0.06538067722100 
retn 0.05831881713061 0.07320156127166 0.03154772847102 
and 0.01562700800442 0.00433427248924 0.00000000000000 
test 0.01986285910459 0.00280397542706 0.00000000000000 
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Table B- 5. Coverged HMM Matrices for N = 4 and Test Set 0 

 
 

 

N=4, M=14, T=65538 

I 1.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000  

A 
 
 
 

 

  0.44045057521127 0.53973027295562 0.00000000000000 0.01981915183314  
0.62792547362477 0.18618315452008 0.06922733549534 0.11666403635980  
0.00000000000000 0.00000000000000 0.93607368937815 0.06392631062179  
0.34692889141062 0.00000000000000 0.00000000000000 0.65307110858937  

B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

call 0.10436800534989 0.11822021256511 0.01027314932301 0.11612084862888  
and 0.01349976044783 0.01245313695031 0.00000000000000 0.00522868141933  
add 0.12144044526825 0.38719748586197 0.00028310901995 0.03441523285621  
mov 0.43023595328126 0.00000428494713 0.94952037682505 0.02275571968959  
cmp 0.06604882783370 0.00000000000000 0.00000000000000 0.00688387326382  
jz 0.05917203374938 0.11726839434507 0.00000000000000 0.00244250914821 
lea 0.02271307888903 0.04655973578208 0.03992336483199 0.00178900787395  
retn 0.00000000261127 0.19447448317301 0.00000000000000 0.03303669112864  
jnz 0.04796843467275 0.04358686152385 0.00000000000000 0.00038036414313  
jmp 0.05028195162244 0.06789037513264 0.00000000000000 0.01315996772862  
push 0.00000000000000 0.00000000000000 0.00000000000000 0.64946985760290  
pop 0.01372077231028 0.00000000000000 0.00000000000000 0.10874111229134  
xor 0.03990062711514 0.01234502971883 0.00000000000000 0.00557613422539  
test 0.03065010684881 0.00000000000000 0.00000000000000 0.00000000000000  
 

 

 

Table B- 6. Coverged HMM Matrices for N = 4 and Test Set 1 

 N=4, M=14, T=65637 

I 0.00000000000000 0.00000000000000 0.00000000000000 1.00000000000000  

A 
 
 

 

0.80883316869008 0.06320914331696 0.03559313923522 0.09236454875772  
0.27355240608643 0.64178389969937 0.00000000000000 0.08466369421419  
0.00000000000000 0.05901229599492 0.94098770400506 0.00000000000000  
0.15518518785122 0.06191124864767 0.00000000000000 0.78290356350103  

B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
call 0.12685046243687 0.11199929673836 0.00853612550654 0.07280030502653 
add 0.23323765834646 0.01851037291423 0.00000000000000 0.20897318307602  
cmp 0.00051981304233 0.02147360786514 0.00000000000000 0.09134592516609 
jz 0.00951432313309 0.01066382234148 0.00000000000000 0.19608849354750 
lea 0.04699127266348 0.00000000000000 0.02799478588275 0.02116523853286  
mov 0.41101127083640 0.00407452652008 0.96346908861070 0.05420224430150  
xor 0.01041078461638 0.00447553751546 0.00000000000000 0.05970641577765   
jnz 0.00847781584294 0.00075510653538 0.00000000000000 0.10764786651215  
jmp 0.02473783521184 0.01120702111540 0.00000000000000 0.11054120772494  
pop 0.00693284728153 0.12426754287804 0.00000000000000 0.00000000024898  
push 0.00000000000000 0.65300481051350 0.00000000000000 0.00000000000000  
retn 0.10885509567445 0.03444266696595 0.00000000000000 0.01633128223171  
and 0.00772252853900 0.00335420883476 0.00000000000000 0.0230884120800 
test 0.00473829237528 0.00177147926222 0.00000000000000 0.03810942577395  
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Table B- 7. Coverged HMM Matrices for N = 5 and Test Set 0 

 

 

N=5, M=14, T=65538 

I 0.00000000000000   0.00000000000000   1.00000000000000  0.00000000000000  0.00000000000000  

A 

 

 
 
 
 

  0.9405214315319   0.00000000000000   0.00000000000000    0.05947856846809    0.00000000000000 
  0.1129644367010   0.70298632458623   0.09892001655545    0.05531723665474    0.02981198550257  
  0.0000000000000   0.00000000000000   0.79609378295742    0.06543191922219    0.13847429782046  
  0.0000000000000   0.00000000000000   0.12417740830274    0.61586286167349    0.25995973002377  
  0.0000000000000   0.16901480782446   0.10904631245805    0.06774692082023    0.65419195889725  

 
 

B 
 
 
 

 

 

 

 

 

call 0.01056237299509     0.00000000151958     0.08555187476068    0.09267881503836    0.20923462951049   

and 0.00000000000000     0.01524718919793     0.02162219579171    0.00509363523682    0.00058701342624   

add 0.00000000000000     0.45736257029521     0.21841193435418    0.03472486592215    0.08567076329304  

mov 0.96541995985256     0.32951107919369     0.06029850748439    0.00000000000000    0.49279248754508  

cmp 0.00000000000000     0.00000000000000     0.07921147534479    0.01712096169939    0.00492726978894       

jz 0.00000000000000     0.01951138082775     0.17251284419881    0.00594289633036    0.00000000000000    

lea 0.02401766715236     0.09208425527757     0.04100052758162    0.00191262451608    0.00436475670059   

retn 0.00000000000000     0.04667059388427     0.02742919903069    0.02172002194133    0.15532636270807    

jnz 0.00000000000000     0.00000000000000     0.10327137331020    0.00000000000000    0.00000000000000   

jmp 0.00000000000000     0.01529291004272     0.09963315594656    0.00798581331095    0.02856757841450  

push 0.00000000000000     0.00000000000000     0.00000000000000    0.68180914402532    0.00000000000000   

pop 0.00000000000000     0.00000000000000     0.00131185622475    0.12620848711047    0.01281949026622    

xor 0.00000000000000     0.01730019345761     0.05199841067901    0.00480273486877    0.00570964834679   

test 0.00000000000000     0.00701982630365     0.03774664529266    0.00000000000000    0.00000000000000  

 

Table B- 8. Coverged HMM Matrices for N = 5 and Test Set 1 

 N=5, M=14, T=65637 

I 

 

0.00000000000000   1.00000000000000  0.00000000000000  0.00000000000000  0.00000000000000  

A 

 

 

 

0.64262392510210    0.13305877596495  0.00000000000000  0.00000000000000  0.22431729893291 

0.07029776430647    0.83694713112539  0.00000000000000  0.00000000000000  0.09275510456816 

0.06593363140192    0.28377975032280  0.00686837680517  0.64341824147011  0.00000000000000  

0.06153810783160    0.00000000000000  0.00000000000000  0.93846189216840  0.00000000000000  

0.05127506960621    0.07036255303579  0.0573136406037     0.00000000000000 0.82104873675419  

B 

 

 

 

 

 

 

 

call 0.11414312762067   0.09178780664076  0.00000000000000  0.00000000000000  0.1212773367205       

add 0.01839111716720   0.22139415067586  0.00000000000000  0.00000000000000  0.2162526399498      

cmp 0.01902016801018   0.06980192768685  0.00000000000000  0.00000000000000  0.0010256620639           

jz 0.00531781714927   0.15392450397864  0.00000000000000  0.00000000000000  0.0082371275539        

lea 0.00107196862260   0.03455297850306  1.00000000000000  0.00000000000000  0.0000000000000      

mov 0.00170007141622   0.09216764637624  0.00000000000000  1.00000000000000  0.51117361573010     

xor 0.00372769157841   0.05030631107538  0.00000000000000  0.00000000000000  0.0078690458847        

jnz 0.00000000014669   0.09281179061727  0.00000000000000  0.00000000000000  0.0000000000000      

jmp 0.00986206845249   0.09799374859572  0.00000000000000  0.00000000000000  0.01665250939040          

pop 0.12110891030325   0.00168433880047  0.00000000000000  0.00000000000000  0.00865846380033        

push 0.66134786029249   0.00000000000000  0.00000000000000  0.00000000000000  0.00000000000000          

retn 0.04108521449830   0.04076323009906  0.00000000000000  0.00000000000000  0.09930854452460          

and 0.00272393218346   0.02057069727973  0.00000000000000  0.00000000000000  0.00652867029279          

test 0.00050005255879   0.03224086967097  0.00000000000000  0.00000000000000  0.00301638408870  
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Table B- 9. Coverged HMM Matrices for N = 6 and Test Set 0 

 
 

 
N=6, M=14, T=65538 

I 
 

 
0.00000000000000  1.00000000000000   0.00000000000000  0.00000000000000   0.00000000000000  0.00000000000000  

 
A 

 
 
 
 

 

 
0.74654207880452   0.06015696292670   0.04465832656218   0.11643327108490   0.03220936062184   0.00000000000000  
0.02060514556199   0.78892780154198   0.05844976057459   0.00000000000000   0.13201729232145   0.00000000000000  
0.00000000000000   0.09872443224713   0.56509608986430   0.00000000000000   0.33617947788853   0.00000000000000  
0.00000000000000   0.24213284361941   0.00710552510345   0.00000000000000   0.02958095288687   0.72118067839026  
0.17068522563537   0.11758994250491   0.09298246310421   0.00000000000000   0.61874236875556   0.00000000000000  
0.00000000000000   0.00000000000000   0.05739856445345   0.00000000000000   0.00000000000000   0.94260143554657  

 
B 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
call 0.00000000000000  0.07963980903354 0.04474903481381 0.00000000000000 0.2726749917285 0.01054750258092  
and 0.01379599847082  0.02259540505228 0.00558907307631 0.00000000000000 0.0004359338601 0.00000000000000  
add 0.38675138566697  0.21282350028897 0.03986379770185 0.27309104766597 0.0739491617351 0.00000000000000  
mov 0.42371179827650  0.05194811358821 0.00000000000000 0.00000000000000 0.4178819850247 0.97785286398327  
cmp 0.00000000000000  0.08312910828087 0.01519714332158 0.00000000000000 0.0113982201845 0.00000000000000  
jz 0.02253365781221  0.17868171055175 0.00200425425423 0.00000000000000 0.0083749572690 0.00000000000000  
lea 0.00000000000000  0.03668926127124 0.00000000000000 0.72530432647419 0.0203587104885 0.01159963343582  
retn 0.08894246264290  0.02453665903854 0.00000000000000 0.00000000000000 0.1450387602515 0.00000000000000  
jnz 0.00000000000000  0.11272898499177 0.00000000000335 0.00000000000000 0.0000000000000 0.00000000000000  
jmp 0.03388174710212  0.10379847545280 0.00779811304391 0.00160462585985 0.0197130677633 0.00000000000000  
push 0.00000000000000  0.00000000000000 0.75945600474962 0.00000000000000 0.0000000000106 0.00000000000000  
pop 0.00000000000000  0.00002764719045 0.11947591062144 0.00000000000000 0.0278200833764 0.00000000000000  
xor 0.02053220621472  0.05507378660489 0.00586666841388 0.00000000000000 0.0023540626160 0.00000000000000  
test 0.00985074381389  0.03832753865470 0.00000000000000 0.00000000000000 0.0000000656915 0.00000000000000  
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Table B- 10.  Coverged HMM Matrices for N = 6 and Test Set 1 

 

 N=6, M=14, T=65637 

I 

 

1.00000000000000  0.00000000000000 0.00000000000000  0.00000000000000 0.00000000000000  0.00000000000000  

 

A 

 

 

 

 

 

0.79902575937822  0.06884299516905  0.00000000000000  0.00395962775884  0.06656516435248  0.06160645334139  

0.00004962226266  0.05402429439583  0.50987354539271  0.14656884949096  0.15294718165373  0.13653650680411  

0.00000000000000  0.00000000000000  0.94315591906849  0.00000000000000  0.00000000000000  0.05684408093152  

0.21315790437331  0.00000000000000  0.00000000000000  0.49708269885924  0.21023608262221  0.07952331414521  

0.00001369512679  0.00000000000000  0.00000000000000  0.93787525245430  0.06052839468865  0.00158265773027  

0.27132909596639  0.00000000000000  0.00000000000000  0.02130601346098  0.06433438422900  0.64303050634357  

 

B 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Call    0.13186949046900  0.00000000000000   0.01033245540491  0.0960162971704    0.0414220481090    0.11261960836740 

Add   0.22409281811031  0.33135053413181   0.00000000000000   0.1833326392870   0.2675745644057    0.01850064871170 

Cmp  0.00325621138480  0.00000000000000   0.00000000000000   0.0000000000000   0.2670579038232    0.01856606136724 

Jz       0.01673161748286  0.00000000000000   0.00000000000000   0.2677942538386   0.0035045087466 0.00792665991814 

Lea    0.00529078865858  0.66864946586819   0.01319064156814   0.0182121989531   0.0567012442008 0.00065911286116 

Mov  0.43823259448582  0.00000000000000   0.97647690302694   0.0468122413825   0.0748684472089 0.00037493358845 

Xor    0.01264762393210  0.00000000000000   0.00000000000000   0.0294594620569   0.1089340239043 0.00559008139898 

Jnz     0.00000000000000  0.00000000000000  0.00000000000000    0.1741889487909   0.0000000000000 0.00262644652140 

Jmp   0.03387824544811  0.00000000000000  0.00000000000000    0.1223503779078   0.0409882716703 0.01186122068469 

Pop   0.00890641093102  0.00000000000000  0.00000000000000    0.0000000000000   0.0053662408508 0.11957216373433 

Push 0.00000000000000  0.00000000000000  0.00000000000000    0.0000000000000   0.0000000000791 0.66099864418808 

Retn 0.11157074655939  0.00000000000000  0.00000000000000    0.0308303051582   0.0137436214224 0.03607282455750 

And  0.01034303858470  0.00000000000000  0.00000000000000    0.0286673453200   0.0000000000000 0.00333377158292 

Test  0.00318041395330  0.00000000000000  0.00000000000000    0.0023359301341   0.1198391255784 0.00129782251794
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Appendix C: HMM Testing Results 

 

 

Figure C- 1 LLPO Scores of Family Virus, Normal Files and Non-Family Virus for test set 0 and N = 
2 
Source:  Author’s research 

 

Figure C- 2 LLPO Scores of Family Virus, Normal Files and Non-Family Virus for test set 1 and N = 
3 
Source:  Author’s research 
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Figure C- 3 LLPO Scores of Family Virus, Normal Files and Non-Family Virus for test set 3 and N = 
4 
Source:  Author’s research 

 

Figure C- 4  LLPO Scores of Family Virus, Normal Files and Non-Family Virus for test set 3 and N = 
5 
Source:  Author 
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Figure C- 5 LLPO Scores of Family Virus, Normal Files and Non-Family Virus for test set 4 and N = 
6 
Source:  Author’s research 

 

 

 

 

 

 

 

 

 

 

 

Test Set 4, N=6
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