Practical Detection of Metamorphic
Computer Viruses

A Writing Project
Presented to
The Faculty of the Department of Computer Science

San Jose State University

By

Sharmidha Govindaraj

December 2008

Approved by: Department of Computer Science
College of Science
San Jose State University
San Jose, CA

Dr. Mark Stamp

Dr. Robert Chun

Mr. Manikandan Veerachamy, CISCO systems

Acknowledgements

| would like to sincerely thank my advisor Dr. Mark Stamp for his expert guidance,
thoughtful insights and bountiful patience without which this research is impossible. |
would also like to thank him for introducing me to this interesting world of information
security. | would also like to thank my committee members Dr. Robert Chun and Mr.
Manikandan for taking time to read through my thesis and providing valuable

comments.

Also, I'm grateful to my loving husband Vetri for his endless love and constant
encouragement which provided me vast energy throughout my graduate studies.
Special thanks to my adorable little one Dharshan for adapting to my tight schedules

and sacrificing his play-time with me.

Abstract

Metamorphic virus employs code obfuscation techniques to mutate itself. It absconds
from signature-based detection system by modifying internal structure without
compromising original functionality. However, it has been proved that machine learning
technique like Hidden Markov model (HMM) can detect such viruses with high
probability. HMM is a state machine where each state observes the input data with
appropriate observation probability. HMM learns statistical properties of “virus features”
rather than “signatures” and relies on such statistics to detect same family virus. Each
HMM is trained with variants of same family viruses that are generated by same
metamorphic engine so that HMM can detect similar viruses with high probability when

encountered later on.

Previous HMM-based detection techniques have relied on opcode sequences which are
obtained by disassembling the binary (executable) code. Such an approach is
impractical, since the disassembly process is slow, and this process must be applied to
each file when scanning for viruses. In this paper, we develop a practical HMM-based
metamorphic virus detector. We efficiently parses a Windows PE file and generate an
approximate opcode sequence which is then used for scoring against the HMM. The
results show that our method produce opcode sequences effectively, eliminate time-
consuming disassembling phase, reduce training time of HMM by 70% and produce

clear separation of scores between family virus and non-members.

Table of Contents

1. INtrodUCtion ... 1
2. Viruses and their types ... e e e e 2
2.1 MetamorphiC VIFUSoouuieeieeiie e e 3
211 Simple SUDBSHIULION........cco i 5

b2 7 1 1= £ 0T o T =T o 1= 4T o [6
2.1.3 Dead Code INSErtioNcooeiiieiieeeee 7
214 Register Usage eXChangecoooiiiiiiiiiiiii e 8
2.1.5 Reordering SUbroutings ... 9

2.2 Other VIFUSES ..o oo 10
3. Metamorphic virus and their detection techniques 10
3.1 Hidden MarkoV MOAEIScccoeiiiiiiiiiceee et 11
4. Metamorphic detection with HMMcooeiiee 13
5. Efficient preprocessing of metamorphic virus executables 14
5.1 Extraction of code segments from Virus executables..............ccccoeeeeiiriiiiinnnnnnn. 15
5.1.1 PE executable format............oooo i 15
5.1.2 PE Code Segment Extraction............ccccceeoiiiii 20
5.1.3 DOS executable FOrmat...........oooooiiiiiii 23

5.2 Preprocessing of Code Segment and Opcode extractionccoeeeeevvnnnnnn. 23
5.2.1 Intel X86 INStruction Set..........coooiiiii i 24
5.2.2 Preprocessing of executable code segmentccoo 26

5.3 Creating Opcode SEQUENCE...........coeviiiiiiee et 33

5.4 Trainingand Testing HMM e 35

Sharmidha Govindaraj Metamorphic Detection

6. Experiment Setup and ResuUIts..........cccoorimiiiiiii e 36
6.1 EXPeriment SEIUP.......ooeiieii e 37
6.2 Experiment REeSUILS | 38
6.3 Experiment Results || from Wong’s method ... 47
6.4 Comparison of our method with Wong’s Method..............ccccvvviiiiiiiiiiiiiin, 51

7. CONCIUSION.....ciiiiieeeri s 54

8. FUture WOrkK ...t sirreessn s s s s s s s e 54

Appendices

Appendix A: Bibliography ... i

Appendix B: Converged HMM Matrices........ccccccceiiimieeciiiircceccseeeecene, lii

Appendix C: HMM Testing Results.......ccccccoiimiimeciiiimiecccicrrrecss e iX

CS298 Report 2 Fall 2008

List of Tables and Figures

Tables
Table 1. PE il HEAAETooiiieeeee ettt sae et e et e st e sar e e naneenanee e 17
Table 2. PE Section Header FIElScooiiiiiiiiiiiiee ettt e s e 18
Table 3. PE Section Header CharacteriStic FIagscuueiiiiiiii e 19
Table 4. Registers and corresponding register @NCOAINGSccoiuiiiiiiiiie i 26
Table 5. Frequency of Occurrence of 14 MFO opcodes in different malwarescccccooeciiiiiiic i 29
Table 6. EXPEIIMENT SEIUDciii ittt e e e e e et e e e e e e e st e e e eeeeeesaababeeeaeeeseaansseeeeeeeensssreneeas 38
Table 7. LLPO scores of 40 family viruses and 40 normal files (compare set) using model 160_0BS_N2_EQ........... 39
Table 8. Minimum score of NGVCK family viruses, maximum score of non-member files and threshold assigned by

T oL PRSP SPURR PPN 42
Table 9. Thresholds and FalSe PrediClioNSoooiiiiiiiiiee e e e e 44
Table 10. Transposed B matrix for N =2 and Test St 2......cc.uiiiiiiiiiiii e 46
Table 11. False Predictions for threShold = -5.4.........cooo i 49
Tables in Appendices
Table B- 1. Coverged HMM Matrices for N =2 and Test Set 0........ooiiiiiiiiiiiieiiiie e iii
Table B- 2. Coverged HMM Matrices for N =2 and Test Set 1o iii
Table B- 3. Coverged HMM Matrices for N =3 and Test Set 0........cooiiiiiiiiiiii e iv
Table B- 4. Coverged HMM Matrices for N =3 and Test Set 1.......uoiiiiiiiiiiiiee e e iv
Table B- 5. Coverged HMM Matrices for N =4 and Test Set 0.......cooiiiiiiiiiiiieiie e v
Table B- 6. Coverged HMM Matrices for N =4 and Test Set 1o e v
Table B- 7. Coverged HMM Matrices for N =5 and Test Set 0........ccooiiiiiiiiiii e vi
Table B- 8. Coverged HMM Matrices for N =5 and Test Set 1.......ooiiiiiiiiiiiiiiiee e Vi
Table B- 9. Coverged HMM Matrices for N =6 and Test Set 0.......cooeiiiiiiiiiiieie e vii

Table B- 10. Coverged HMM Matrices for N = 6 and Test Set 1 ... viii

Figures

Figure 1. New MaliCious COdE thr@atSccoiiiuiiiiiiee it e e e et e e e e e e e e e e e seeaasaeeeeaeeeesnnsaeeeaaeeeannnaes 2
Figure 2. Different forms of @ metamorphiC VIFUScooiiiiiiiiiieee e e e e e e e e e 4
Figure 3. SImMPIe SUDSHIULIONeiiiiiiie et e e et et e s e e e s e e e et e e e nneees 5
Figure 4. INSTrUCHON FEOMAEIINGeiiiiiiie ittt ettt a bt ra bt e e ettt e s aab e e e e aabe e e e e sre e e nnneas 6
(o [0 (= IRT I LY To W oo T L= YN] F=T=T i o I PPN 7
Figure 6. Register USAge @XChaNGEooii ittt e e e e et e e e e e e e e nnete e e e e e e e e anntneeeeaeeaannnnes 8
Figure 7. Reordering SUDIOULINESuee ettt oottt e e e e e ettt e e e e e e e aaeeeeeeaaeaaannnaeeeeaaeaaaannsneeeaaaaaannnnes 9
Figure 8. Hidden MarkoV MOGEIoiiiiiiii ettt e et e e s et e e s nn e e e e anbeeennes 12
Figure 9. Preprocessing Of VIFUS fIlESeiiiiiiiiiiiiii ettt e e e e e e e e e st e e e e e e e s sntaeaeeeaeeas 13
Figure 10. PE executable format LAyOULccoiiiiiiiiiiie ettt e et e et e e e en e e e e nee e e snnneeeeaneeeeennns 16
Figure 11 Detailed Layout of PE e@X@CULADIEoc.oiiiiiiiii e 20
Figure 13. INtel iNStrUCtioN TOMMAt............eiieiie e e e e e e e e st e e e e e e e s e ntaraeaaeeaans 24
Figure 14. Frequency of Occurrence of 14 MFO opcodes in normal files (in percentage)cccceeveiereiieneeiceennes 27
Figure 15. Frequency of Occurrence of 14 MFO opcodes in Malwares (in percentage)c.coccoveevcveieniieeeisienenes 28
Figure 16. Convert 1-byte opcode to 2-byte opcode for ADD r8/m8, imM8..........c.eviiiiiiiiiiiiie e 30
Figure 17. Flow Diagram for MFO Opcode DeteCtioNuviiiiiiiiiiiiiiee e e e e e 32
Figure 18. Training and ClasSifying PrOCESSeueiiuiie e eiie et e e et e e s st e e e et eeseeeeesneeeeeanteeeeaneeeeaanneeeeanseeeeanns 36
Figure 19. Log Likelihood per Opcode (LLPO) of family viruses, non-family viruses and normal files 40
Figure 20. Training time of 25 models for 800 IErationNsciiiiiiiiiiiii e 45
Figure 21. Probability distribution of observation symbols in each state for N =2 and testset 2.............cecccvveeeenennn. 47
Figure 22. Log Likelihood per Opcode (LLPO) of family viruses, non-family viruses and normal files..................... 48
Figure 23. Number of false predictions at each state N ... 50
Figure 24. Training time of 25 models for 800 HErationscooiiiiiiiiii e 51
Figure 25. Comparison of opcode sequence length T in both methodsccoeviiiiiiiiii e, 52
Figure 26. Comparison of HMM training time in both Methodsoocciiiiiiii e 52
Figure 27. Comparison of False Negative PrediCtionooiiiiiiiii e 53

Figures in Appendices

Figure C- 1 LLPO Scores of Family Virus, Normal Files and Non-Family Virus for testset0Oand N=2..................... [
Figure C- 2 LLPO Scores of Family Virus, Normal Files and Non-Family Virus for test set 1 and N=3....................... iX
Figure C- 3 LLPO Scores of Family Virus, Normal Files and Non-Family Virus for testset3and N=4....................... X
Figure C- 4 LLPO Scores of Family Virus, Normal Files and Non-Family Virus for test set 3and N=5....................... X

Figure C- 5 LLPO Scores of Family Virus, Normal Files and Non-Family Virus for test set4 and N=6...................... Xi

Sharmidha Govindaraj Metamorphic Detection

1. Introduction

In today’s electronically connected digital world, data is stored in the connected
storages and shared globally. Modern technology has changed the way we learn, work,
play, and live but it does not offer luxury of high availability and accessibility without
endangering the security and privacy of information. No matter how secure data is
stored and accessed, information still get stolen. Everyday and every second,
somebody in the world has his/her identity and money seized. Even worse, information
which is worth lots of time, energy, and resources is completely wiped out by malicious
programs causing huge loss. As we all understand, the modern digital world poses
multifaceted vulnerabilities, a major concern is to protect data from being corrupted or

destroyed by malicious codes.

Malicious code is “any code added, changed, or removed from a software system to
intentionally cause harm or subvert the system's intended function" (Jordan, 2002).
Malicious code can be classified as virus, worm, Trojan, backdoors, and so on.
Although all malicious codes are commonly called virus, each of the above term mean a
type of attack the malicious code perform. For our purpose, we refer the commonly
used term ‘virus’ to address all malicious codes in discussion for this project. Computer
viruses have been consistently evolving. Each new generation of viruses poses new
challenges for antivirus developers. Fortunately, antivirus developers do rise to the

challenges and devises a method to protect data from viruses as they show up.

Our research focuses on a specific type of virus called metamorphic virus that uses
obfuscating techniques to mutate itself. We will discuss further about detecting
metamorphic viruses and enhancing one of the detection technique called Hidden
Markov Models (HMM).

The organization of this report is as follows; Section 2 covers viruses and their types

with an emphasis on metamorphic virus (with examples); Section 3 covers available

CS298 Report 1 Fall 2008

Sharmidha Govindaraj Metamorphic Detection

detection techniques with an emphasis on HMM; Section 4 covers our research on
detecting metamorphic viruses more practically and efficiently using HMM; Section 5
covers the training and testing of HMM; and finally, Section 6 covers the discussion of

results.

Figure 1 shows number of new malicious threats every year.

550,000 —
. 499 811
500,000 —
450,000 p—
400,000 —
AG0.000 —

00000 —

250000 —
212,101

Number of new threats

200,000 |—
150,000 |—

100,000 =— 74,482
42573 48226 53410 50,761

50,000 B8 20,451
6260 9138 B47S
[S W EE——— 1 _l

Jul=Dec Jar—Jun Jul-Dec Jan-Jlun Jul-Dec Jar-lon Jul-Dec Jan=Jun Jul-Dec Jan—Jun Jul-De

20002 2003 2003 2004 2004 2005 2005 2006 2006 2007 2007

Period

Figure 1. New Malicious Code threats
Source: Turner et al., 2008

2. Viruses and their types

Viruses are malicious programs that have threatened the world of computers for about
thirty years; and will be more challenging than ever before. As the modern viruses
present new challenges, the antivirus community is constantly putting efforts to
understand, learn, and develop new antivirus kits to detect and remove viruses. There

are many types of viruses with different risk levels we have discovered.

CS298 Report 2 Fall 2008

Sharmidha Govindaraj Metamorphic Detection

Some of well known viruses are
* Boot sector virus
* Polymorphic virus
* Macro virus

* Metamorphic virus

The following section explains in-depth details of metamorphic virus followed by brief

introduction to other viruses.

2.1 Metamorphic Virus

Metamorphic viruses are viruses that mutate itself with the use of metamorphic engine
that come along with virus code. These viruses are a new generation of viruses that
escape signature detection techniques, as the shape of virus body is changed every
time when it infects. To explain in short, metamorphic viruses mutate its body and

change the internal structure preserving the functionality of virus.

Such metamorphism is employed by obfuscating the code using different techniques.

Five of the techniques are listed below (Mohammed, 2003).

» Simple Substitution

* Instruction Reordering
+ Dead code Insertion
* Register usage exchange

» Reordering subroutines

CS298 Report 3 Fall 2008

Sharmidha Govindaraj

Figure 2 shows different shapes of virus body in each mutation (Szor, 2002).

GEMERATIOMS OF & COMPLEX
METAMCRPHC VIRLIS

/_\
a\d)

y

7 ,f
o o o

;/’?’;A h / Z
.rﬁwxfﬁﬁnmff%ﬁ e
fffhmr; o

.-"f-":-"" 2
';;?'/ fﬁ’ffffffﬁ :
.-'".-"'.-":-"" .-":-":-" A, ":-"H-":.?.-f-g
’ it S

.-"':""'.-"'.r" .-',-'.-"'r;r ,r".‘r‘"r.-"'.-"',-',u‘r'.Ell.:
.-'" -"'",.-"" -"'".:_"i'..-"!-". R

.if“f? ’

LES
,,,,,,,

. s«?’@*}}}ﬁsiff irs;fffﬁﬁ':
?,.:?,J;{;y ff?ff?fﬁa{ﬁﬂd‘? e
-
i f;;ff"?ffﬁjf ’“’j"j;ﬁﬂ

I'I'

ih

I'.'

f fsﬁfxﬁffxﬁi’f” 7

Figure 2. Different forms of a metamorphic virus
Source: Szor, 2001

CS298 Report 4

Metamorphic Detection

Fall 2008

Sharmidha Govindaraj

2.1.1 Simple Substitution

Metamorphic Detection

This technique allows for the substitution of an instruction or a block of code with an

equivalent instruction or a block of code. To accomplish this technique, the

metamorphic generator must maintain a dictionary of instructions and their equivalents.

An example showing how substitution is done is illustrated in figure 3 below.

Original Code

push eax

push ebx

push ecx

push edx

push esi

push edi

push ebp

mov ebp, 0

mov eax, 1

CPUID

cmp ax, OF20h

jb error

clc

mov di, ax

mov ecx, 02Ch

RDMSR

shr eax, 16

and al, 00000111b

movzx bx, al

shl bx, 1

mov [si], bx
error: pop ebp

pop esi

pop edi

pop edx

pop ecx

pop ebx

pop eax

Figure 3. Simple Substitution
Source: Author’s Research

CS298 Report

Obfuscated by
Simple
Substitution

e

Code obfuscated through instruction
substitution

xor ebp, ebp

XOr eax, eax

oreax, 1

CPUID

mov bx, ax

cmp bx, 0F20h

jb error

lahf

and af, OFEh

sahf

mov di, bx

mov bx, 02ch

movzx ecx, bx

RDMSR

rol eax, 16

and al, 00000111b

xor bx, bx

mov bl, al

shl bx, 1

mov [si], bx
error: popad

Fall 2008

Sharmidha Govindaraj Metamorphic Detection

2.1.2 Instruction Reordering

Reordering instructions and inserting unconditional branches or jumps using GOTO
statements is one way of metamorphism employed in virus body. Reordering can also
be done by reordering the independent instructions in the same way compilers do.

Figure 4 below illustrates an example of instruction reordering.

Code obfuscated through instruction
Original Code reordering
mov ax, 0A000h
mov ax, 0A000h jmp sl
mov es, ax s2: jmp s3
xor edi, edi s4: mov esi, 0BOOOh
push 0 Obfuscated by jmp s5
pop ds Instructign s1: mov es, ax
mov esi, 0BOOOh Reordering xor edi, edi
mov ecx, 64 * 1024 > jmp s2
shr ecx, 02h s3: push 0
rep movsd es:[edi], ds:[esi] pop ds
jmp s4
s6: shr ecx, 02h
jmp s7
s5: mov ecx, 64 * 1024
jmp s6
s7: rep movsd
es:[edi], ds:[esi]

Figure 4. Instruction reordering
Source: Author’s Research

CS298 Report 6 Fall 2008

Sharmidha Govindaraj Metamorphic Detection

2.1.3 Dead Code Insertion

This technique inserts do-nothing or garbage instructions like NOP inside the virus
body without altering original functionality. This is one of the easiest techniques to

obfuscate the code section and the easiest to detect as the actual virus code is not

rearranged. Dead code insertion is illustrated in Figure 5.

mov ebx, OF5h

si -

Figure 5. Dead code insertion
Source: Author’s Research

CS298 Report 7

mov ebx, OF5h

push ebx
push edx add ebx, 1
push eax sub ebx, 1
mov eax, 75h pop ebx
mul ebx Obfuscated push edx
inc eax by Dead push eax
adc edx, 0 Code mov eax, 75h
mov ebx, eax Insertion rol eax, 16
mov ecx, edx _ > ror eax, 16
pop eax mul ebx
pop edx inc eax
neg ebx add esi, 0
mov [esi], ebx adc edx, O

mov ebx, eax
mov ecx, edx
push ecx
mov ecx, 1
loop 11

pop ecx

pop eax

jmp sl

pop edx

nop

nop

neg ebx

xchg ebx, edx
xchg edx, ebx
mov [esi], ebx

. Code obfuscated through Dead Code
Original Code Insertion

Fall 2008

Sharmidha Govindaraj Metamorphic Detection

2.1.4 Register Usage exchange

Register Usage Exchange is a technique which involves changing usage of registers in
the code without modifying the flow of code. This technique often requires adding more
instructions for resetting or restoring the state of the registers. It seems to be more
complex compared to other techniques as it requires knowledge of processor registers
and supported instruction sets along with the ability to parse the binary code section

and identify the register usage. Figure 6 below illustrates register usage exchange.

Code obfuscated through register
Original Code reassignment

mov ebx, OF5h push esi
push edx mov esi, OF5h
push eax Obfuscated push edi
mov eax, 75h by push edx
mul ebx exchanging push eax
inc eax registers mov eax, 75h
adc edx, 0 mul esi
mov ebx, eax > inc eax
mov ecx, edx mov edi, edx
pop eax adc edi, 0
pop edx mov esi, eax
neg ebx mov ecx, edi
mov [esi],ebx pop eax

pop edx

pop edi

neg esi

mov ebx, esi

pop esi

mov [esi], ebx

Note: EBX replaced with ESI and EDX replaced with EDI

Figure 6. Register usage exchange
Source: Author’s Research

CS298 Report 8 Fall 2008

Sharmidha Govindaraj Metamorphic Detection

2.1.5 Reordering Subroutines
Obviously, using this technique, metamorphic engine reorders subroutines and thus
changes the structure of the code. The above technique is another simple technique to

obfuscate the shape of the virus. Reordering Subroutines is illustrated in figure 7 below.

. Code obfuscated through instruction
Original Code reordering
memory_copy PROC
count_0Os_eax PROC mov esi, 0A000h
push eax mov edi, 0BOOOh
push edx mov ecx, 10 * 1024
xor ebx rep movsd es:[edi],ds:[esi]
mov ecx, 32 memory_copy ENDP
i1 shr eax, 1
J:C i2 count_0Os_eax PROC
_ inc eb_x push eax
i2: loop il push edx
pop eax xor ebx
pop edx mov ecx, 32
ret il shreax, 1
count_0Os_eax ENDP jci2
Obfuscated by inc ebx
multiply_ebx_by_5 PROC Reordering D loop il
Subroutines ' 3
push eax pop eax
_—
push edx pop edx
mov eax, 5 ret
mul ebx count_Os_eax ENDP
mov ebx, eax
pop edx main PROC
pop eax call count_0s_eax
_ ret call multiply_bx_by_5
multiply_ebx_by 5 ENDP call memory_copy
ret
memory_copy PROC main ENDP
mov esi, 0AOOOh
mov edi, 0BOOOh multiply_ebx_by_5 PROC
mov ecx, 10 * 1024 push eax
rep movsd es:[edi],ds:[esi] push edx
memory_copy ENDP mov eax, 5
. mul ebx
main PROC mov ebx, eax
call count_0Os_eax pop edx
call multiply_bx_by_5 pop eax
call memory_copy ret
ret multiply_ebx_by 5 ENDP
main ENDP
END main
Figure 7. Reordering subroutines
Source: Author’s Research
CS298 Report 9 Fall 2008

Sharmidha Govindaraj Metamorphic Detection

2.2 Other viruses

One of the oldest and popular viruses from the late 1980s is boot sector virus. It
replaces Master Boot Record (MBR) or boot sector in the hard drive with its own code.
The boot sector is a drive sector where the Operating System (OS) boot loader lives.
The Basic Input/Output System (BIOS) transfers control to the boot sector at the end of
Power-On Self-Test (POST) to hand off control to the OS while booting. Infecting the
boot sector enables the boot virus to gain the ability to take over the control whenever
the system boots, stay hidden in memory during runtime, and perform its malicious

activities.

One of the other popular and challenging viruses is polymorphic virus. It uses
encryption to get away from antivirus software that only uses simple signature detection
technique to detect viruses. Each polymorphic virus incorporates a decryptor at the top
of an execution flow so that the virus can decrypt the encrypted part of the code at first
and hand off the control to decrypted virus. As a polymorphic virus usually embeds the
decryptor at the beginning of the code section, it enables anti-virus scanners to look for

decryptor byte patterns at the beginning of a code section and detect the virus easily.

A Macro virus is a type of virus that mainly infects documents that are normally not
executable. It is written in a macro language that is supported by word processors and
email applications; this provides mechanism to embed macro programs within
documents and execute it whenever the document is opened. Modern Antivirus

software has the capability to detect such macro viruses.

3. Metamorphic virus and their detection techniques

As metamorphic viruses employ complicated techniques, many different methods have
been developed to detect metamorphic viruses. Each detection method has its own
pros and cons. Some of the detection techniques described in Symantec’s white paper
(Szor, 2001) are highlighted below.

CS298 Report 10 Fall 2008

Sharmidha Govindaraj Metamorphic Detection

Geometric Detection technique relies on “shape heuristic”; this allows to find whether a
file is infected, or not, by learning the file structure of the virus and looking for learnt
structures in the infected files. Often, this technique is prone to false positives as it
simply learns the layout of the virus and does not learn about the virus at the instruction

level.

Code emulation is employed by creating a virtual machine which emulates the
underlying hardware including processor, memory, and peripherals and runs an
operating system. This technique detects viruses by running suspicious files on its guest
virtual machine and looks for any malicious activities and patterns. The above technique
has the ability to detect complicated viruses but it needs considerable system resources

to create a virtual machine.

The last and most successful technique is the Machine learning technique. This
technique uses the concept of data mining, neural networks, and HMM to learn the
structure of the virus at the instruction level. Though, data mining techniques produce

more false positives, neural networks and HMM have a very low rate of false positives.

As our research is focused on using HMM for metamorphic virus detection, HMM will be

discussed in detail in the following section.

3.1 Hidden Markov Models

The Hidden Markov Model is a state machine with a finite set of states, each of which is
associated with a probability distribution for certain observation symbols. This model is
called “Hidden” Markov Model because the external observer can only see the outcome
or the observation, and the state remains hidden. Transition between states is
associated with transition probability and an outcome, or observation is associated with
observation probability. HMMs are statistical learning techniques by which we can train
the model for particular observation sequence (opcode sequence from a program). After
training a HMM with a set of opcode sequence, the model gains the ability to detect
similar opcode sequence in a given input.

CS298 Report 11 Fall 2008

Sharmidha Govindaraj Metamorphic Detection

The notations used in HMM are listed below.

T = the length of the observation sequence

N = the number of states in the model

M = the number of observation symbols

Q = the states of the Markov process {q0, q1, ..., gN-1
V=set of possible observations {0, 1, ... ,M -1}

A = the state transition probabilities matrix

B = the observation probability matrix

1 = the initial state distribution matrix

O = (00, 01, ...,0T-1) = observation sequence.

A= (A, B,) is a HMM model

Figure 8 below shows the Hidden Markov Model state transition where X is a hidden

state and O is observation sequence which an observer can see.

y A A A
Markov process: Xyt X > X, > . * Xr_1
B B B B
Observations: Oq O, O, L Or_y

Figure 8. Hidden Markov Model
Source: Stamp, M., 2004

CS298 Report 12 Fall 2008

Sharmidha Govindaraj Metamorphic Detection

4. Metamorphic detection with HMM

Initially, HMM is trained with variants of same family viruses (viruses generated with
same virus generation kit) during which HMM create a model for each family viruses.
Once training is completed, HMM use that model to detect whether a given file belongs
to particular family, or not. Before the training phase, a number of steps should be
carried out. Let us examine the steps involved in Wong and Stamp’s (2006) work; first,
different viruses are generated using virus generators; second, the generated viruses
are assembled using TASM 5.0 to create executables; and finally, the executables are
disassembled back into assembly code using IDA Pro. The above steps are illustrated

in Figure 9 below.

TASM, TLINK IDA Pro
Virus Assembly Source =————p Virus Executables = Disassembled Virus ASM Files

Figure 9. Preprocessing of virus files
Source: Wong and Stamp (2006)

Once disassembled, they extracted assembly opcode sequences from disassembled
ASM files and concatenated all the opcode sequences to form a single long sequence.
Finally, HMM was trained with the single concatenated sequence. Large collections of
metamorphic viruses generated by virus generator kits are grouped into different data
sets with each data set containing viruses generated by same Virus generation kit. Five
fold cross validation is applied to a data set and further subdivided into five subsets: four
being training sets and one being a test set; each time, a different train set and test set
is used. Training set viruses are used for HMM training and test set viruses are used to

test, or evaluate the performance of HMM in finding the same family virus.

CS298 Report 13 Fall 2008

Sharmidha Govindaraj Metamorphic Detection

5. Efficient preprocessing of metamorphic virus executables

As explained in section 4, Wong and Stamp used IDA pro, a disassembler, to
disassemble the executables before extracting the opcode sequence for the training set.
This disassembling step is time-consuming, inefficient, and impractical when it involves
large numbers of virus files. An alternative method is to extract the opcode sequences

directly from executables and use the resultant sequence to train HMM.

Extracting opcode sequences programmatically from binary executables with no manual
work involved is very complicated, as the binary file is raw and, in most cases, data is
embedded within the code section. This research is focused on simplifying and
completely removing the manual work involved in the process of creating opcode
sequence and improving the efficiency of overall preprocessing. In our method, we
followed three consecutive steps to preprocess a virus file. The steps involved in the

method of preprocessing under discussion as are follows;

1. Extracting Code section: An executable may include a number of sections
such as code, data, and stack. As virus codes mostly lives only in code
section, we need to extract the code section from the executable file
discarding other sections. Though there are a lot of executable formats
currently in use, we have taken only Portable Executable (PE) format and
DOS executable format into consideration as these formats are most-used
popular formats.

2. Create opcode sequence: Analyze each virus file individually and determine
Most Frequently Occurred (MFO) mnemonics. Find out all possible opcodes
for MFO mnemonics and create a lookup table of MFO opcodes. The opcode
sequence is created directly from the executable files by scanning byte by
byte and checking if it falls into MFO opcodes by looking into the MFO
opcode table.

3. Concatenate opcode sequence: Finally, opcode sequences are divided into

data set and train set. All opcode sequences of data set are concatenated to

CS298 Report 14 Fall 2008

Sharmidha Govindaraj Metamorphic Detection

form a single observation sequence. This observation sequence is used as
train set for HMM.

5.1 Extraction of code segments from Virus executables

5.1.1 PE executable format
PE executable (PE) format is a “file format for executables, object code, and DLLs, used

in 32-bit and 64-bit versions of Windows operating systems” (Wikipedia). | have
focused on PE executables as it is the most used and most vulnerable format being the
standard of windows OS. Before dealing with extraction of code segment from PE
executables, it is essential to discuss bits and pieces of PE file format to have a good
idea of PE executable. The subsequent sections describe PE format in detail and how
to extract code section from PE format compliant file. The format of a PE file is shown
figure 10 (Page 16).

MS DOS header

A PE file always starts with a MS DOS header that can be identified by a two-byte
signature represented in ASCIl as “MZ” or in hex as “Ox5A4D”. Though MS-DOS header
is comprised of many fields, e_magic and e_Ifanew are the fields we are interested in.
e_magic field contains the signature of MS DOS header and e_Ifanew contains Relative
Virtual Address (RVA) to PE header. It also includes a checksum file that can be used

to check the integrity of the header.

A MSDOS stub program is included in windows 32 and 64 bit format to display a
message “This program cannot be run in DOS mode” when PE executables are run

under MSDOS environment.
This header was embedded in PE executables to provide backward compatibility when

the industry was transitioning from DOS operating system to Windows operating

system.

CS298 Report 15 Fall 2008

Sharmidha Govindaraj

MS-DOS 2.0 Compatible
EXE Header

Unused

OEM |dentifier
OEM Information

Offset to PE Header

MS-DOS 2.0 Stub Program
and
Eelocation Table

Unused

PE Header
(Aligned on 8-byte boundary)

Section Headers

Import Pages
Import information
Export information
Base relocations
Resource information

Figure 10. PE executable format Layout

Source:

CS298 Report

Microsoft PE specification, 2008

Metamorphic Detection

Base of Image Header
H"_ﬂf_ J

-

16

=

MS-DOS 2.0 Section
(for M3-DOS
compatibility, only)

Fall 2008

Sharmidha Govindaraj Metamorphic Detection

PE header

The MS-DOS header is followed by PE header that contains a PE signature File header
and Optional Header. The PE signature is used to identify the PE header in a PE file
which is represented by a 4-byte value in ASCII as “PE” or in hex as “0x00004550”
Among the many fields file header contains, we are interested in two important fields.

Those fields and their usages are explained in Table 1.

Table 1. PE file Header

Field _ Description _ _ i
NumberOfSections The number of sections. This indicates the size
of the section table, which immediately follows
| the headers.

SizeOfOptionalHeader | The size of the optional header, which is
required for executable files but not for object
files. This value should be zero for an object file.
For a description of the header format, see
section 3.4, "“Optional Header (Image Only)."

Source: Microsoft PE Specification, 2008
Since optional header is not required for our purpose, the field SizeOfOptionalHeader is

used to skip the optional header.

Section Header

Followed by the optional header is a section header that contains information about
different sections of the file. Table 2 shows all the fields in section header. Section
header is an array of structures where there is a structure for each section containing all
the fields as shown in table 2 (Page 18). The name field and characteristics field are
required to find the code section. The pointertorawdata and sizeofrawdata fields are
used to locate and extract the code section. Table 3 (Page 20) shows section header

characteristic flags.

CS298 Report 17 Fall 2008

Sharmidha Govindaraj

Table 2. PE Section Header Fields

size

Field

Metamorphic Detection

| Description

TS
0

8

Name

An B-byte, null-padded UTF-3 encoded sting. if the
string Is exactly 8 charactersfong, thers 1s no
terminating null. Forlonger names, this fleld contalns &
ztagh (f) thatisfollowed by an ASCH reprezentation of
adecimalnumbertnatis an offset into the sinng
table. Executable Images do nok w58 aatring table
and donotsupportiseclion nameslongerthan
Bcoharacters

Virtualslze

The totalslze of the sectlon when leaded Info
memory. [fihis value is greater than Sze DiRawData,
the section s zero-padded. Thisfisld B vald only for
executable Images and should be setto zers for
aobjectfiles,

12

Virtualaddress

Forexecutable images, the address of the fisst byte of
the section refative to the Image base whenthe
zecllonlsloaded Inle memaory.

16

SzedfRawData

The slze of the inltlalized data on disk (forimage files).
Foraxecutable images, this must be a multiple of
FieAllgnmentfrom the opHonal headee: If this iz less
than Wirtvalsize, the remaind erof the section iszero-
fited. Because the Size0fRawData fleld lsrounded Dut
the Virtual®ize fleld s not, it ls possible for
Zze(fRawlata to be greaterthan Virtuatsize as weil
When:asection contains onky uninitialized data, this
figld should be zero.

20

PolnterToRawData

The file pointerto the first papge of the section within
the COFF e, For executable Images, this must ba a
multiple of FilgAgnment from ihe optional header

94

28

PointerToRzios atians

PoinierTolimenumbers

The file pointerto the beginning of relocation anirles
forthe sectien, Thisisselto zero lor exacutable
imagesorifthere are norelocations.

The flle pointerto the beginning of ing-number entries
forthe section. This s set tozero W thiere are no G OFF
line numbers. Thig valus should be zercforanimage
because COFF debugging Information B deprecated.

i2

NumberOiReiocations

The number ol reiocation enfries forthe sectlon, Thiz s
gt to zero tor executanie images.

34

NumberOiLimenumbers

The number of line-nember-eniries for the section. This
value should be zero for animapge becauss COFF
debugalnp Information s deprecaled.

36

Charactenstics

The dflagsthat describe the characterstics of the
geoticn

Source: Microsoft PE Specification, 2008

CS298 Report

18 Fall 2008

Sharmidha Govindaraj

Table 3. PE Section Header Characteristic Flags

Metamorphic Detection

Flan

Value

Dascription

Cx000c0C0n

Reserved fo

1 fulure usa.

Cxk0o0CoCo
Ix00000002

Reserved fo

-Hese.-ved to

Fiuture use
rfuture uss

000000004

Reserved fo

r fulure use.

IMAGE SCN_TYPE_ND_PAD

00020003

Tne section shouwld not be padded
tothe next boundary. Thisflag is
obsolete and s replaced oy
IMAGE SCMN_ALIGN_1BYTES. This i&
valid anly for obiect fias.

IMAGE_SCN_CNT_CODE
IMAGE_SCN_CNT_INIMALZED_DrATA
IMAGE SCN_CHNT_UNINITIALEED

IMAGE S5CN_LNK_OTHER

0xD00000T0
Que00000G20

Ox00000040%

0000 006D

OxD0000100

Reserved fo
Thesection
code,
The section
data,
The section
data.

Reserved to

riuture use
contalng executable

gontalnsinitlakzed
contalns uninitiatize d

rfuture use

IMAGE_SCN_LNE_INFO

Q00000200

Thesection

contalns conmments ar

athar information. The drecive

saction has

this type. This & vaitd for

ablect files anly.

IMAGE_SCN_LMK_REMOVE

(CxDO0C0ADT

Ox00000800

Reserved forfuture use.

The section
ol theimag
objectiiles.

Wil not bacaomea par-t
g. This is valld only for

IMAGE SCN_LNK_COMDAT

00008 000

The seciion

contalng COMDAT

data. For more Infarmration, sge
saction 5.5.6, "COMDAT Sections
(Dbiect Ontyl." Thisls valid onky far

object files

IMAGE_SCN_GPHEL

Ox0000B00G

The section

contalns o ata

raferenced throwgh the global
polnter (GP).

IMAGE_SCN_LNE NRELGC_OVFL

01000600

The section
refocatlons

contalns extendad

IMAGE SCN_MEM_DISCARDABLE

02000000

The section
negded

can be discarded as

IMAGE SCHN_MEM _NOT CACHED

Cx04000000

The section

cannot be cached

MABE SCN_MEM_NOT PAGED
IMAGE SCN_MEM_SHARED

IMAGE 5CN_MEM_EXECUTE

IMAGE SCN_MEM_READ
IMAGE SCN_MEM_WRITE

Ox0A000000
Ox 10000000

Ox20000000

0x40000000
060000000

The section
The section

135 21k] o

The section
code.

The section

The seciion

isnotpageable.
canbeshared n

canbe executed as
canberead,
can be writien to.

Source: Microsoft PE Specification, 2008

CS298 Report

19

Fall 2008

Sharmidha Govindaraj Metamorphic Detection

Figure 11 shows the layout of PE executable in more detail with signatures, partitioned

file, and optional header and pointers from section header entry to appropriate sections.

CodeView Debug Information

COF F Symbols

COFF Line Numbers

reloc

idata

edata .
Sections

.data

text

3 =
Section Table(aay of
IMAGE_SECTION_
4 HEADER:s)
Dats Directony
MAGE NT IMAGE OPTIOMSL
HEADERS HEADER
IMAQE_FILE_
“PEWO" PE Signature
Off set 0 MZ" MS-DOS Header

Figure 11 Detailed Layout of PE executable
Source: Patriek, 2002

5.1.2 PE Code Segment Extraction
This section explains how our program extracts code segment from PE executables

with reference to actual codes. Figure 12 (page 22) demonstrates a high level execution

flow of code segment extraction.

First, the DOS header is read and the e_magic field is checked for MS DOS signature
“‘MZ” or “Ox5A4D”. If the signature is valid, then we have to jump to PE header using the

address in e_lfanew field. Once the PE header is read from the file, the signature field is

CS298 Report 20 Fall 2008

Sharmidha Govindaraj Metamorphic Detection

checked for PE signature “PE” or “0x00004550”. If the signature is valid, the file being
processed is confirmed as a PE executable file. Once PE header is located and
validated, the SizeOfOptionalHeader field is used to skip the optional header since
optional header is not required for our purpose. Now we have reached the section

header.

The section header is an array of structures where there is a structure for each section
in the file. So, to find the section header for code section, we have to compare the name
field to “text” or characteristics field to “0x0000020”. As the name field is not
standardized, it is not named always “.text” and so we are checking for characteristics
field too. According to characteristics flags, “Ox0000020” mean that the section contains
executable code. So, once the code section header is located, the field called
PointerToRawData is used to locate the code section, and the field called

SizeOfRawData is used to extract the code section.

After completing the code segment extraction, the program is tested with different input
exe files. All the tested files differ in size or number of code sections. Further testing is
conducted by using HexEdit and PEdump utilities, a dumping utility for executables. The
same exe files, which were used for testing our program is given as input to both of
these utilities. The output of our program is binary compared with utility outputs.
Comparison showed that our code worked flawlessly and extracted code segments

exactly.

CS298 Report 21 Fall 2008

Sharmidha Govindaraj

Metamorphic Detection

yes

MS DOS header found

|

Jump to RVA in
e_lIfanew field

yes
Signature =
~ “0x00004550”
PE header found &
file validated

)

skip optional header for
“SizeOfOptionalHeader” bytes

)

characteristics=

yes “0x0000020"

Jump to RVA in “PointertoRaw”
data field

)

Extract code section upto
“SizeOfRawData” bytes

")

End

¢

CS298 Report

Not a valid PE file

|

End

C

No

N\

Not a valid PE file

|

End

No

Code section not found

End
Figure 12. PE Code section extraction flow
Source: Author’s Research

22 Fall 2008

Sharmidha Govindaraj Metamorphic Detection

5.1.3 DOS executable Format

Although DOS executables seem to be outdated, many early viruses, like G2 and
MPCGEN, are yet in the DOS executable form. MS DOS header in DOS executables is
exactly the same as in PE executables. For our purpose, we are required to read
following fields: e_magic, e_cblp, e_cp and e_ip. e_magic field contains the signature
represented in ASCIl as “MZ” or in hex as “Ox54AD”. This field is validated to check
whether the given file is a valid DOS file. If DOS executable signature is found, e _cp,
e_ip and e_cblp field are read from the header. e_ip field specify the offset where code
segment starts. e_cp field specify number of pages in the file where each page is 512

bytes long. e_cblp field specify number of bytes used in the last page of code segment.

Once we get the values of all the above fields, size of the code segment is calculated as

follows,

Size of code segment = e_cp*512 - (512 - e_cblp)

Once size of code segment is calculated, extract the code section starting from the
offset pointed by e _ip.

5.2 Preprocessing of Code Segment and Opcode extraction

As discussed earlier, Wong and Stamp used IDApro, a disassembler, to create
disassembled ASM files and extract assembly opcode sequences from executable files.
One of the goals for this project is to eliminate time-consuming and inefficient

disassembling process.

With the code section of virus executables in hand, we started researching for methods
which doesn’t go through disassembling to extract assembly opcodes like MOV, ADD
and so on. We found two obvious alternatives. First method is Most Frequently
Occurred (MFO) opcode searching method which looks for the MFO opcodes in the
binary executable and creates the opcode sequence of MFO opcodes. Second method

is adding a part of disassembling code which disassembles on the fly with no manual

CS298 Report 23 Fall 2008

Sharmidha Govindaraj Metamorphic Detection

intervention and extracting only the opcodes leaving behind operands. Of these two
alternatives, we selected the former approach because latter involves disassembling

and our major goal is to skip disassembling.

5.2.1 Intel x86 Instruction Set
A brief introduction to Intel x86 instruction set is required to understand low level details

of assembly instruction. Figure 13 shows Intel instruction format.

Each instruction consists of instruction prefixes, instruction opcode bytes, MOD value,
address displacement value and an immediate data. The format of an Intel x86
processor architecture based instruction is shown in the figure 13 below. The assembly
language commands corresponding to opcodes are called mnemonics. For example,
the assembly language command ADD is a mnemonic corresponding to the opcode
0x80.

Inlfrtgf}ii?eosn Opcode ModR/M ‘ SIB Displacement Immediate
Up to four 1 or 2 byte 1 byte 1 byte Address Immediate
prefixes of opcode (if required) (if required) displacement data of
1-byte each of1,2,0r4 1,2,0r4
(optional) / \ bytes or none bytes or none
7 65 32 0 7 6 5 32 0
Mod Ogsgée RM Scale | Index Base

Figure 13. Intel instruction format
Source: Intel Programmer’s Manual

CS298 Report 24 Fall 2008

Sharmidha Govindaraj Metamorphic Detection

The purpose of different fields of an instruction set is described below.

1. Instruction prefixes are used as modifiers to the main command. Prefixes can be
used to repeat string operations, to provide segment overrides, and to change
operand and address sizes.

2. An opcode is a one or more bytes long binary representation of assembly
language mnemonic. While assembling, the assembler translates mnemonics to
corresponding codes.

3. Mod field allows specifying which of the general purpose registers or addressing
modes are used in an instruction.

4. Displacement field is used to provide a displacement value to an address
referred in an instruction. For example, an ADD instruction with a reference to an
address displaced by an offset 4056 can be represented as “ADD ax, [bp+di] +
4056”. The displacement can be 1, 2, or 4 bytes long.

5. An immediate operand is a constant, used as an operand in an instruction, which
can be a 1, 2, or 4 bytes value. In an instruction, “ADD ax, 10", immediate

operand is 10.

Some of the basic properties of such instruction are as follows:

* The length of an assembled instruction varies based on number of fields and
size of each field used in an instruction.

* A single mnemonic may be translated into different opcodes based on the
type of operands used.

* The Mod field varies based on operand used.

* An operand can be a register, immediate, direct or indirect memory reference
with or without displacement.

« Some fields are optional.

There are three types of registers: 8-bit, 16-bit and 32-bit registers represented as r8,

r16 and r32. Table 4 below shows registers available in each type.

CS298 Report 25 Fall 2008

Sharmidha Govindaraj Metamorphic Detection

Table 4. Registers and corresponding register encodings

Register r8 r16 r32
Encodings

0 AL AX EAX
1 CL CX ECX
2 DL DX EDX
3 BL BX EBX
4 AH SP ESP
5 CH BP EBP
6 DH Sl ESI
7 BH DI EDI

Source: Intel’s Programming Manual

5.2.2 Preprocessing of executable code segment
Since there are more than 100 instructions in Intel x86 instruction set, rather than
working on all those instructions, it is inevitable to take only the Most Frequently

Occurred (MFO) instructions into account for three important reasons:

1. It is time-consuming to collect binary opcodes covering the whole instruction
set to form opcode table.

2. The opcode table should be as small as possible to achieve better efficiency.

3. Training HMM with small set of MFO instruction opcodes allows HMM to find
patterns or features of virus effectively

CS298 Report 26 Fall 2008

Sharmidha Govindaraj Metamorphic Detection

As per Billar, only fourteen instructions in entire Intel instruction set are MFO
instructions. Those instructions are ADD, AND, CALL, CMP, JMP, JNZ, JZ, LEA, MOV,
PUSH, POP, RETN, TEST and XOR. After a careful analysis, we found that using MFO
instructions enables HMM to learn some patterns in the virus code and detect viruses
more effectively. Figure 14 and 15 below shows the percentage of occurrence of 14

MFO opcodes in normal and malicious files respectively.

Figure 14. Frequency of Occurrence of 14 MFO opcodes in normal files (in percentage)
Source: Billar

CS298 Report 27 Fall 2008

Sharmidha Govindaraj Metamorphic Detection

Figure 15. Frequency of Occurrence of 14 MFO opcodes in Malwares (in percentage)

Source: Billar

As demonstrated in figures 14 and 15, approximately 90% of total instructions used are
14 MFO instructions.

Billar et al. has also discussed the percentage of occurrence of 14 MFO opcodes in
different categories of malwares like Viruses, Worms, Trojans and Bots. Table 5 (page

27) shows the frequency of occurrence in percentage.

As the key idea in our approach is to search for a binary instruction opcode in the code
segment, there are possibilities for false predictions. For instance, when we search for a
1-byte binary opcode, it may potentially hit many operands with same byte value
resulting in false positives. In this context, false positive occurs when an operand or a
part of an irrelevant opcode is detected as an opcode in examination. For example, one
of the opcodes for JMP is OXEB and one of the opcodes for SUB is 0xEB83. When an
operand OxEB or the part of SUB opcode is detected as JMP, it is considered as a false

positive prediction.
CS298 Report 28 Fall 2008

Sharmidha Govindaraj

Table 5. Frequency of Occurrence of 14 MFO opcodes in different malwares

Metamorphic Detection

Opcode Goodware Bot Trojan Virus Worm
mov 25.3% 34.6% 30.5% 16.1% 22.2%
PUSH 19.5% 14.1% 15.4% 22.7% 20.7%
CALL 8.7% 11.0% 10.0% 9.1% 8.7%
POP 6.3% 6.8% 7.3% 7.0% 6.2%
CcvP 5.1% 3.6% 3.6% 5.9% 5.0%

Jz 4.3% 3.3% 3.5% 4.4% 4.0%
LEA 3.9% 2.6% 2.7% 5.5% 4.2%
TEST 3.2% 2.6% 3.4% 3.1% 3.0%
JMP 3.0% 3.0% 3.4% 2.7% 4.5%
ADD 3.0% 2.5% 3.0% 3.5% 3.0%
JNZ 2.6% 2.2% 2.6% 3.2% 3.2%
RETN 2.2% 3.0% 3.2% 2.0% 2.3%
XOR 1.9% 3.2% 2.7% 21% 2.3%
AND 1.35% 0.5% 0.6% 1.5% 1.6%

Source: Billar

As discussed earlier in Intel x86 instruction set, the length of an opcode varies based on
number of operands, types of registers and types of memory access used in an
instruction. It may be 1, 2, or more bytes in length. As it will be time consuming to
search for longer opcodes, after a careful analysis, it has been found that MFO
instructions are mostly 1 or 2 bytes long. Further, we discovered that more the number
of 2-byte opcodes used to identify MFO opcodes, better the accuracy. Due to the fact
that the probability for an operand or data to have the same value as the two-byte

opcode is less, we have tried to extend 1-byte opcodes to 2-byte opcodes. The 1-byte

CS298 Report 29 Fall 2008

Sharmidha Govindaraj

opcode that can not be converted into 2-byte opcode should be located based on some
conditions rather than looking for it indiscriminately. We used a utility called Debug32 to
find 2-byte alternatives for 1-byte opcode. Figure 16 below illustrates how 1-byte

opcode is converted into 2-byte opcodes based on the type of registers used in the ADD

instruction.

Operand

DL (0xCO)

Operand

CL (0xC1)

Operand

BL (0xC2)

Operand
1-byte opcode for

ADD r8/m8, imm8 AH (0xC3)

(0x80)
Operand

DH (0xC4)

Operand

CH (0xC5)

Operand

BH (0xC6)

Figure 16. Convert 1-byte opcode to 2-byte opcode for ADD r8/m8, imm8
Source: Author’s Research

CS298 Report 30

Metamorphic Detection

2-byte opcode

(0xC080)

2-byte opcode
(0xC180)
2-byte opcode
(0xC280)
2-byte opcode
(0xC380)
2-byte opcode

(0xC480)

2-byte opcode

(0xC580)

2-byte opcode

(0xC680)

Fall 2008

Sharmidha Govindaraj Metamorphic Detection

As figure 16 illustrates, in the instruction “ADD r8/m8, imm8”, ADD refers to actual
instruction or mnemonic, r8 refers to 8-bit register, m8 refers to 8-bit memory location
and imm8 refers to 8-bit constant. The register references in this instruction can be
substituted with any of the seven 8-bit registers (DL, CL, BL, AH, DH, CH, BH) to extend
1-byte opcode (0x80) into 2-byte opcodes.

After careful analysis of virus source files, we decided to collect all possible opcodes for
register and direct memory addressing instructions and only MFO opcodes for indexed
addressing instructions. Since including all the indexing instructions in the opcode table
introduces all possible byte values from 0x00 to OxFF in the second byte of the opcode,
the probability of catching false positives is high. For example, binary opcode for
instruction “ADD r8/m8, r8” is 0x02. In general, 1-byte opcode 0x02 can be extended to
2-byte based on type of register or memory addressing used. If we have to include all
the indexing instructions for ADD, opcode table will require having all values from
0x0200 to 0x02FF. With the second byte position having a possibility of any value
between 00 to FF, any operand or sub-opcode with value 0x02 will be detected as ADD

regardless of the second byte.

Though effort has been made to change every 1-byte opcode to 2-byte, there are
instructions whose opcodes cannot be extended. In most cases, the instructions with
AL/AX/EAX as the first operand and imm8 as the second operand have 1-byte opcode.
There is no way to extend these 1-byte opcodes to 2-byte.For example, binary opcode
for instruction “ADD AL, imm8” is 0x04 which is an instruction referring the register AL
directly. There are totally 60 such 1-byte opcodes for 14 MFO instructions of which 35
MFO opcodes are included in the collection. The 35 opcodes collected are the 1-byte
opcodes of CMP, CALL, JMP, JNZ, JZ, POP and PUSH. The 1-byte opcodes for
remaining instructions are neglected to avoid False Positives (FP).Finally, we

maintained two sets of opcode list: 1-byte opcode list and two-byte opcode list.

CS298 Report 31 Fall 2008

Sharmidha Govindaraj Metamorphic Detection

A high level flow involved in detecting MFO opcodes are shown in Figure 15 below.

Read 2-bytes from virus file

No Is 2-byte yes

opcode found

Read 2-bytes from virus file Translate 2-byte opcode into
mnemonic and write to opcode

sequence file

Is 1-byte No
opcode
found?

yes

Translate 1-byte opcode into
mnemonic and write to opcode
sequence file

Figure 17. Flow Diagram for MFO Opcode Detection
Source: Author’s Research

CS298 Report 32 Fall 2008

Sharmidha Govindaraj Metamorphic Detection

Since most of the 1-byte instructions are PUSH and POP, we may end up catching
False Positives (FP) for these instructions. So, we checked for certain conditions while
detecting PUSH instructions based on the MFO pattern found in the virus assembly
files. The pattern found for PUSH instruction is that PUSH is always followed by another
PUSH or POP instruction. So, whenever 1-byte PUSH opcode is detected, the
subsequent byte is checked for PUSH or POP. If the subsequent byte is detected as
PUSH or POP, both of the bytes are added to observation sequence. Otherwise, both
bytes are skipped.

In addition to PUSH and POP, we added conditions to detect 1-byte JMP. We noticed
more FP for JMP because whenever our algorithm comes across 2-byte SUB, it is
detected as JMP because both instructions are sharing a common opcode. In this case,
let us consider the 1-byte opcodes OxEB and OxE9 for JMP and two-byte opcodes
0xEB83 and 0xE983 for SUB. As you notice here, both of the instructions are sharing
the same opcode OxEB and OxE9. To avoid such false positives, whenever we
encounter OXEB and OxE9, the consecutive byte is checked for 0x83. If the consecutive
byte is detected as 0x83, both of the bytes are skipped. Otherwise, 1-byte OXEB or OxE9

is written as JMP in the observation sequence.

Using our algorithm, the generated opcode sequence for each virus file was 95%
accurate with 5% being FP. It means that 20 out of 450 opcodes in the opcode

sequence are FP.

5.3 Creating Opcode sequence

To create opcode sequences, an input set is formed with executables of virus. Input set
is divided into three sets consisting of family viruses, non-family viruses and normal
files. The virus generated by a same generator belongs to the same family and is
referred as family virus. In contrast, virus generated by different generator belongs to
different family and is referred as non-family virus. Family viruses are named as
‘NGVCKexes” consisting of 200 metamorphic virus variants generated by Next

Generation Virus Creation Kit (NGVCK) generator. Non- Family viruses are named as

CS298 Report 33 Fall 2008

Sharmidha Govindaraj Metamorphic Detection

“OtherExes” consisting of 25 virus generated by Second Generation virus Generator
(G2) and Mass Code Generator (MPCGEN). It includes

« 15 virus variants generated by Second Generation virus generator (G2)
version 0.70a released in January 1993 representing non-family virus
» 10 virus variants generated by Mass Code Generator (MPCGEN) version 1.0

released in 1993 representing non family virus

The normal files are 40 random utility executables collected from Cygwin DLL (version
1.5.25).

Wong and Stamp collected 10 G2, 10 VCL32 and 5 MPCGEN as non-family virus.
VCL32 generated files has some properties that doesn’t allow us to include it as input
set for our program. VCL32 generated files have all the function definitions inside data
sections and only function calls in code section. Due to the reason that code section is
same in all VCL32 virus executables and our program extracts only the code section to

extract opcode sequences, we have not considered VCL32 files.

Once an input set is created, it is given as input to “create_obs.exe” program where
“Obs” stands for observation sequence or opcode sequence. The output of this program
is the data set and the compare set. A data set of 200 individual files each consisting of
corresponding opcode sequence is created and a compare set of 65 individual non-

family viruses and normal files consisting of corresponding opcode sequence is created.

CS298 Report 34 Fall 2008

Sharmidha Govindaraj Metamorphic Detection

5.4 Training and Testing HMM

Training and testing followed the same methodology of (Wong, 2006). Five-fold cross
validation is applied to the data set and divided into train set and test set. So, train set
consists of 160 virus opcode sequence (four subsets each with 40 viruses) and test set
(one subset) consists of 40 virus opcode sequence. Each time, a different test set is
selected and other four subsets are used as train set. This process is repeated five
times. The length of each train file in data set ranges from 395 to 445 with an average
of 420. So, the typical length of concatenated 160 opcode sequence is in the range of
65,450 to 65,650 with an average of 65,550.

Once HMM is trained with the concatenated opcode sequence, a model is created for
every train set. After training, the test set and compare set is scored with corresponding
trained model. For each file in test set and compare set, Log Likelihood Per Opcode
(LLPO) is calculated as its score. For further details about LLPO, refer (Wong, 2006). A
threshold value is also calculated which is an average of minimum LLPO in data set and
maximum LLPO in compare set. The files with scores above (greater than) the
threshold are classified as virus and files with scores below (less than) the threshold are
classified as non- virus or non member. Training and classifying is explained in figure

18. The steps followed in training and classifying are

Train HMM with train set consisting of 160 opcode sequence files
Score and calculate LLPO for files in test set and compare set

Determine threshold value to classify member virus and non-members

A

Continue step 1 until all test sets are scored

These steps are diagrammatically shown in figure 18 (page 36).

CS298 Report 35 Fall 2008

Sharmidha Govindaraj Metamorphic Detection

Training:
Scores (LLPO)
(1) virusQ -2.0
b Training set virus1 -2.3
(160 files) (2) Training HMM (3) Scoring . (4)
: <+=] Threshold
normald -11.3
iz other0 -8.9
ey (3)
Data Set i T, | |
(1) Sy - Test set Normal programs
i S (40 files) (40 files)
Other viruses
(25 files)
Comparison Set
Classifying.

(1) Scoring
VT — % LLPO > Threshold ?

Figure 18. Training and classifying process
Source: Wong, 2006

6. Experiment Setup and Results

Section 6.1 describes the input data, platform setup and programming languages used
in the experiment. Section 6.2 provides the results obtained using our method which
eliminates disassembling and works on 14 MFO opcodes. Section 6.3 provides the
results obtained using Wong's method which uses disassembling and works on all
opcodes in Intel instruction set. In the final section, we compare results of our method

with results of Wong’s method to test the accuracy and efficiency of our method.

CS298 Report 36 Fall 2008

Sharmidha Govindaraj Metamorphic Detection

6.1 Experiment Setup

As discussed earlier, input set consists of three set of executables. First set consists of
200 NGVCK executables named as NO to N199 (N stands for NGVCK), second set
consists of 15 G2 executables named as G2T0 to G2T14 and 10 MPCGEN executables
named as MPCO to MPC9, and third set consists of 40 Cygwin executables named as
CYGO to CYG39.

Extracted code section from each virus executable is collected in ICS (Individual Code

Section) Data Set and named as cs_n0 to cs_n199.

Data set consists of 200 NGVCK opcode sequence files named as OBSNO to OBSN199
(OBS stands for observation sequence and N stands for NGVCK). Compare set
consists of 40 Cygwin opcode sequence files named as OBSCO to OBSC39 (C stands
for Cygwin) and 25 non-family virus opcode sequence files named as OBSVO to
OBSV24 (V stands for other virus).

TrainFile consists of 10 files, 5 being “alphabet” file consisting of distinct opcodes in
each train set and 5 being “in” (in stands for input) file consisting of concatenated 160
opcode sequence in test set. Each alphabet and input file is named 160 _OBSN_EO to
160_OBSN_E4. In the file name, 160 stands for number of opcode sequences being
concatenated, OBS stands for observation sequence, N stands for NGVCK and EO

stands for excluded set 0 which is the test set.

With number of states N being different each time ranging from 2 to 6, let us see how
models are named. There are 25 models created by HMM with 5 being created for each
state N. If a model is named as 160 _OBSN_N2_EO, then

* 160 is the number of files in train set

» OBSN stands for NGVCK observation sequence

* N2 stands for number of states as 2

+ EO stands for test set 0

CS298 Report 37 Fall 2008

Sharmidha Govindaraj Metamorphic Detection

Table 6 below shows the experiment platform and programming languages used.

Table 6. Experiment Setup

Platform Windows XP
Virus Generators NGVCK, G2 and MPCGEN
Programming Languages C, Ruby
Assembler & Linker TASM, TASM32, TLINK, TLINK32, MSVC 6.0,
Ruby
Utilities HexDump, Debug32

Source: Author’s Research

6.2 Experiment Results |

With N ranging from 2 to 6, and test sets ranging from 0 to 4, 25 models were created
with HMM.

Let us examine how the HMM separated family viruses from compare set files. All 25
models made a clear separation of scores between family viruses and compare set
files. Each model scored a data set consisting of 40 family viruses and compare set
consisting of 40 normal files and 25 non-family viruses. Table 7 shows LLPO scores of
40 family viruses and 40 normal files. The scores show that LLPO scores of family

viruses are -1.9 or greater and LLPO scores of normal files are -2.1 or lower.

CS298 Report 38 Fall 2008

Sharmidha Govindaraj Metamorphic Detection

Table 7. LLPO scores of 40 family viruses and 40 normal files (compare set) using model
160_0BS_N2_EO.

NGVCK Family Viruses Normal cygwin files

Virus Virus File File

Name LLPO Name LLPO Name LLPO Name LLPO
OBSNO -1.91341 OBSN20 -1.85286 OBSVO0 -2.15787 OBSV20 -2.52410
OBSNI1 -1.91630 OBSN21 -1.85252 OBSV1 -2.10833 OBSV21 -2.58423
OBSN2 -1.94792 OBSN22 -1.87886 OBSV2 -2.48227 OBSV22 -2.42321
OBSN3 -1.78941 OBSN23 -1.94889 OBSV3 -2.49157 OBSV23 -2.44344
OBSN4 -1.81915 OBSN24 -1.91749 OBSV4 -2.39297 OBSV24 -2.51328
OBSN5S -1.88139 OBSN25 -1.84351 OBSV5 -2.53091 OBSV25 -2.63752
OBSN6 -1.89580 OBSN26 -1.82954 OBSV6 -2.75892 OBSV26 -2.21347
OBSN7 -1.85012 OBSN27 -1.87690 OBSV7 -2.75575 OBSV27 -2.46925
OBSNS -1.86159 OBSN28 -1.85007 OBSVS -2.48225 OBSV28 -2.54372
OBSNO9 -1.91538 OBSN29 -1.89606 OBSV9 -2.46713 OBSV29 -2.46418
OBSN10 -1.83419 OBSN30 -1.93708 OBSV10 [-2.48225 OBSV30 -2.50300
OBSN11 -1.78523 OBSN31 -1.87644 OBSVI11 | -2.46713 OBSV31 -2.85430
OBSN12 -1.88537 OBSN32 -1.80577 OBSV12 | -2.37040 OBSV32 -2.47473
OBSNI13 -1.82211 OBSN33 -1.84254 OBSV13 | -2.71943 OBSV34 -2.24818
OBSN14 -1.90262 OBSN34 -1.86094 OBSV14 | -2.71957 OBSV34 -2.49244
OBSN15 -1.91341 OBSN35 -1.92944 OBSV15 | -2.49580 OBSV35 -2.49583
OBSN16 -1.87386 OBSN36 -1.90475 OBSV16 | -2.51546 OBSV36 -2.69585
OBSN17 -1.81544 OBSN37 -1.82279 OBSV17 | -2.39297 OBSV37 -2.49893
OBSNI18 -1.91167 OBSN38 -1.86641 OBSV18 | -2.71439 OBSV38 -2.53286
OBSNI19 -1.90808 OBSN39 -1.89339 OBSV19 [-2.44965 OBSV39 -2.56675

Source: Author

CS298 Report 39 Fall 2008

Sharmidha Govindaraj Metamorphic Detection

Figure 19 below shows the scores of test set 1 and scores of compare set files for
model with three states; i.e., N=3 . There is a clear distinction of scores between family
and non-family viruses. Two of the normal files have scores closer to family virus scores

but doesn’t interleave the family virus scores.

TestSet1,N=3
'1 T T T T T T T 1
) 5 10 15 20 25 30 35 40

-1.2

-1.4

-1.6

18 ¢ ** ’_‘0’0 IS4 ¢ 0““0’ PN 4
o BT ote ¥ ’ ',’0“ o ¢
S @ Family Virus
7] 2 *
o B Normal Files
= [
TS - . Non Family Virus

n Al "
24 ety e
[
|
-2.6 - - . -
[|
-2.8
-3
Fiile Number

Figure 19. Log Likelihood per Opcode (LLPO) of family viruses, non-family viruses and normal
files
Source: Author’s Research

The score results shown in the above diagram is the typical range of scores we
obtained for all models. Refer Appendix B to view the graphs for all states. The overall
results show that HMM is able to separate the family viruses from normal files and non-

family viruses regardless of number of states.

CS298 Report 40 Fall 2008

Sharmidha Govindaraj Metamorphic Detection

To classify a file as family virus or non-member, we need to determine a cutoff or
threshold value. The files which are scored greater than threshold are considered as
family viruses and those which are scored lower than threshold is considered as non-
members. Threshold is calculated as the average of minimum score of family virus and

maximum score of non member files.

Threshold = (MinDataLog + MaxComparelLog)/2
where
MinDatalLog is the minimum score of family virus

MaxComparelLog is the maximum score of non member files

If score of a family virus is lower than threshold, it results in False Negative (FN)
prediction because a family virus is classified as non-member file. In other hand, if score
of a non-member file is greater than threshold, it results in False Positive (FP) prediction

because a non-member file is classified as family virus.

Table 8 shows the minimum score of NGVCK family viruses, maximum score of non-
member files and corresponding threshold assigned by each model. There are 25
different scores corresponding to 25 models. Two greatest and lowest thresholds are
marked bold in Table 8.

CS298 Report 41 Fall 2008

Sharmidha Govindaraj

Metamorphic Detection

Table 8. Minimum score of NGVCK family viruses, maximum score of non-member files and

threshold assigned by model

Test Set Min score of family Max score of non Threshold
viruses member files
N=2 -1.9488 -2.1083 -2.0286
N=3 -1.8745 -2.1342 -2.0044
Test Set 0 N=4 -1.8633 -2.0813 -1.9723
N=5 -1.8230 -2.0417 -1.9323
N=6 -1.7994 -2.0841 -1.9448
N=2 -1.9252 -2.1490 -2.0957
N=3 -1.8896 -2.1400 -2.0710
Test Set 1 N=4 -1.9810 -2.1048 -2.0429
N=5 -1.9438 -2.1413 -2.0426
N=6 -1.9645 -2.1667 -2.0510
N=2 -1.9381 -2.1456 -2.0438
N=3 -1.8905 -2.1396 -2.0151
Test Set 2 N=4 -1.8632 -2.1055 -1.9843
N=5 -1.8381 -2.1418 -1.9900
N=6 -1.8158 -2.1345 -1.9752
N=2 -1.9289 -2.1429 -2.0359
N=3 -1.8661 -2.1337 -1.9999
Test Set 3 N=4 -1.8496 -2.0998 -1.9747
N=5 -1.8311 -2.1361 -1.9836
N=6 -1.8158 -2.1411 -1.9785
N=2 -2.0463 -2.1441 -2.0952
N=3 -1.9836 -2.1357 -2.0596
Test Set 4 N=4 -1.9500 -2.1000 -2.0250
N=5 -1.9185 -2.1362 -2.0274
N=6 -1.9368 -2.1457 -2.0413
Source: Author’s Research
CS298 Report 42 Fall 2008

Sharmidha Govindaraj Metamorphic Detection

A single threshold should be determined from the 25 thresholds assigned by the model.
The determined threshold will act as a cutoff point for all the model scores. If the
determined threshold is too small, FP rate will be increased. If the determined threshold
is too large, FN rate will be increased. The final threshold which is greater than all non-
member files and lower than all family viruses will avoid more FP and FN. We
experimented with four different threshold values. The corresponding false prediction
rate can be viewed in Table 9 (page 50). The thresholds used for the experiment are
-1.93, -1.94, -2.07, -2.09. When the threshold is as large as -1.93, there are 15 FN. So,
only 25 of 40 family viruses are classified as family viruses and remaining 15 is
classified as normal file. Of the four thresholds used, only -2.09 and -2.07 results in
detection rate greater than 95%. -2.07 is considered as final threshold because the
number of false prediction is as low as 2 when compared to 4 for -2.09. The above false
prediction is FP resulting in classification of 2 non-member files as family viruses. Since
there are no FN when threshold is set to -2.07, detection rate is determined as 1.0000
where
Detection Rate = TP / #FV

where

TP - True Positives which means number of family viruses classified as family
viruses

#FV - Total number of family viruses
In the above case where threshold is -2.07, all 40 family viruses are classified as family

viruses. So the detection rate is 1.000.

CS298 Report 43 Fall 2008

Sharmidha Govindaraj Metamorphic Detection

Table 9. Thresholds and False Predictions

Test Set -1.93 -1.94 -2.07 -2.09

FP | FN | Detect | FP | FN | Detect | FP | FN | Detect | FP | FN | Detect

Rate Rate Rate Rate

TestSet0 | 0 | 3 10925 | 0 | 2 0.95 OO0] 1000] 0 O | 1.000
TestSet1 | 0 | O | 1.000 | 0 | O | 1.000 | O | O | 1.000 | O | O | 1.000

N=2 TestSet2| O | O [1.000 | O | O [1.000 | O | O | 1.000 | 1 0 | 1.000
TestSet3 | 0 | 0 | 1.000 | O | O | 1.000 | 2 | O | 1.000 | 2 | O | 1.000
TestSet4| 0 | 0 | 1.000 | O | O | 1.000 | O | O | 1.000 | 1 0 | 1.000

Test Set0 | 0 1 109751 0 1 109751 0] 0 | 1000 O O | 1.000
TestSet1 | 0 1 109751 0 1 109751 0] 0 | 1000]| O O | 1.000

N=3 TestSet2 | 0 1 1097510 1 109751 0] 0 | 1000 0] O | 1.000
TestSet3 | 0 1 1097510 010000 (O] 1.000(O0{(O 1.000
TestSet4 | 0 1 109751 0 1 109751 0] 0] 1000]| 0] 0 | 1.000

Test Set0 | 0 1 1097510 0| 10000 (O]1.000(O0{(O 1.000
TestSet1 | 0 | O | 1.000 | 0 | O | 1.000 | O | O | 1.000 | O | O | 1.000

N=4 TestSet2| 0 | O (1.000O | O | O [1.00O | O | O | 1.000 | O | O [1.000
TestSet3 | 0 | 0 | 1.000 | O | O | 1.000 | O | O | 1.000 | O | O | 1.000
TestSet4] 0 | 0 | 1.000 | 0 | O | 1.000 | O | O | 1.000 | O | O | 1.000
TestSet0 | 0 | 2 0.95 01 0 (100007 0 {1000](O07] 0| 1.000
TestSet1 | 0 | O | 1.000 | 0 | O | 1.000 | O | O | 1.000 | O | O | 1.000

N=5 TestSet2| 0 | O (1.000 | O | O [1.00O | O | O | 1.000 | O | O [1.000
TestSet3 | 0 | 0 | 1.000 | O | O | 1.000 | O | O | 1.000 | O | O | 1.000
TestSet4| 0 | 0 | 1.000 | O | O | 1.000 | O | O | 1.000 | O | O | 1.000
TestSet0 | 0 | 3 [0925] 0 1 109751 0] 0 | 1000]| O O | 1.000
TestSet1 | 0 | O | 1.000 | 0 | O | 1.000 | O | O | 1.000 | O | O | 1.000

N=6 TestSet2 | 0 1 109751 0 1 109751 0] 0 | 1000]| 0] O | 1.000
TestSet3] 0 | 0 | 1.000 | 0 | O | 1.000 | O | O | 1.000 | O | O | 1.000
TestSet4 | 0 1 1097510 0| 10000 (O] 1000 (O0{(O 1.000

Source: Author’s Research

CS298 Report 44 Fall 2008

Sharmidha Govindaraj Metamorphic Detection

Now, let us examine the training time of HMM to train each model. By default, HMM is
trained for 800 iterations. The running time of each iteration depends on number of
states N and length of observation sequence T. In our experiment, value of N ranges
from 2 to 6 and average observation sequence length is 65,450. The training time of
HMM ranges from 31 seconds for N =2 to 18 minutes for N = 6. Figure 20 below shows

the training time taken in seconds to create models with N ranging from 2 to 6.

100

90

80

70

60

50

40

r # Time in Minutes

30

Training Time in Minutes

20

10

0] 1 2 3 4 5 6 7

Number of States N

Figure 20. Training time of 25 models for 800 iterations
Source: Author’s Research

Eventually, the trained model creates A, B and Pi matrices where A matrix is the state
transition probability, B matrix is the observation probability and Pi is the initial state
distribution. To examine the features of a virus, HMM observes the observation
sequence and plot the values in the B matrix. So, after a model is trained, HMM assigns
probability of occurrence of each opcode in particular state which can be viewed in B

matrix. Table 10 (page 52) shows transpose of B matrix for 2 states and test set 2.

CS298 Report 45 Fall 2008

Sharmidha Govindaraj

Table 10. Transposed B matrix for N = 2 and Test set 2

Opcode State 0 State 1

Call 0.04139156206336 0.10697308319445
add 0.03274170541118 0.19756946116809
cmp 0.00712020350956 0.0329235076862
jz 0 0.0329235076852
lea 0.03349106402365 0.02797364747966
mov 0.7834975094335 0.19927252251573
xor 0 0.02828160382626
jnz 0 0.04193156798704
jmp 0 0.05445961728529
pop 0 0.03281600972899
push 0.06910259796872 0.11012487167077
retn 0.03265535759005 0.06104544906463
and 0 0.01339285867145
test 0 0.0169689229576

Source: Author’s Research

Metamorphic Detection

In table 10 above, any state with zero value means that the corresponding opcode

doesn’t belong to that state. For example, opcode jz has zero value in state 0 and non-

zero value in state 1 which implies that jz occurs only in state 1.

In figure 21, the above table is plotted. The graph shows that opcode MOV occurs
mostly in state 0. Opcodes XOR, POP, AND, TEST, JZ, JNZ and JMP occur only in

state 1 and have zero probability in state 0. Rest of the opcodes occurs in both states.

CS298 Report

46

Fall 2008

Sharmidha Govindaraj Metamorphic Detection

0.9 I
0.8

0.7
0.6

0.5

0.4 W State 1
[DState 0

Probability

0.3
0.2

0.1 !E
o4

call add cmp jz lea mov xor jnz jmp pop push retn and test

Opcode

Figure 21. Probability distribution of observation symbols in each state for N = 2 and test set 2
Source: Author’s Research

6.3 Experiment Results Il from Wong’s method

As discussed earlier, Wong’s method require disassembled executables as input. First,
all input executables should be disassembled. Using IdaPro, we disassembled the
same set of input files (200 NGVCK, 40 Cygwin, 15 G2 and 10 MPCGEN executable
files) used in our method and created respective asm files. We used the generated asm
files as input to the HMM. The typical observation sequence length of concatenated

opcode sequence ranges from 91,830 to 92,430 with an average of 92,130.

With N ranging from 2 to 6, and test sets ranging from 0 to 4, 25 models were created
with HMM. Let us examine how the HMM separated family viruses from compare set
files. All 25 models made a clear separation of scores between family viruses and
compare set files. Each model scored a data set consisting of 40 family viruses and

compare set consisting of 40 normal files and 25 non-family viruses.

CS298 Report 47 Fall 2008

Sharmidha Govindaraj Metamorphic Detection

Figure 22 shows the scores of test set 1 and scores of compare set files for model with
three states; i.e., N=3 . There is no clear distinction and some interleaving of scores
between family viruses and normal files. About three scores of normal files are

interleaving with scores of family viruses.

Test Set 1, N=3
0)
009000080000 000¢ 00000000090 000000¢0¢g
5 _ ml0 15 ®0 25 30 35 40
|] | u | | E nm [] B
-20 - |]
(1] u
m [] | @ Family Virus
. .
40 - [| - B Normal Files
Non Family Virus

()
o
A 60 -
o [
= n - "

-80 -] | -

m o (T
-100 - -
-120 Fiile Number

Figure 22. Log Likelihood per Opcode (LLPO) of family viruses, non-family viruses and normal
files
Source: Author’s Research

HMM is not able to determine a well defined threshold for any of the models, since the
maximum score of compare set is lesser than the minimum score of data set. For
example, for the model with N=3 and test set 1, the minimum score of data set is -5.9
and the maximum score of compare set is -3.0. Since, -5.9 is lesser than -3.0, it is not
able to find threshold. Also, due to the fact that all the models have interleaving scores,
HMM doesn’t find well defined threshold. So, after analyzing all the scores and keeping
the detection rate greater than 95%, we determine -5.4 as the threshold. With -5.4 as
threshold, there are 39 FP predictions and 7 FN predictions. Table 11 shows the FP and

FN for each model.

CS298 Report 48 Fall 2008

Sharmidha Govindaraj Metamorphic Detection

Table 11. False Predictions for threshold = -5.4

Model -5.4
FP FN Detection Rate
Test Set 0 1 0 1.000
Test Set 1 3 1 0.975
N=2 TestSet2 3 0 1.000
Test Set 3 3 0 1.000
Test Set 4 3 0 1.000
Test Set 0 0 0 1.000
Test Set 1 3 1 0.975
N=3 Test Set 2 3 1 0.975
Test Set 3 3 0 1.000
Test Set 4 3 0 1.000
Test Set 0 1 0 1.000
Test Set 1 3 1 0.975
N=4 TestSet2 3 0 1.000
Test Set 3 3 0 1.000
Test Set 4 3 0 1.000
Test Set 0 1 0 1.000
Test Set 1 3 1 0.975
N=5 Test Set 2 3 1 0.975
Test Set 3 3 0 1.000
Test Set 4 3 0 1.000
Test Set 0 1 0 1.000
Test Set 1 3 1 0.975
N=6 TestSet2 1 0 1.000
Test Set 3 1 0 1.000
Test Set 4 1 0 1.000

Source: Author’s Research

CS298 Report 49 Fall 2008

Sharmidha Govindaraj Metamorphic Detection

The diagrammatic representation of table 11 can be viewed in figure 23.

Threshold =-5.4

14

12 ‘\/_\
10 \

Number of False Predictions

6 —FP
4 —=—FN
2 N\
0 T T T T 1

2 3 4 5 6

Number of States N

Figure 23. Number of false predictions at each state N
Source: Author’s Research

Now, let us examine the training time of HMM to train each model. In default, HMM is
trained iteratively for 800 iterations. The run time of each iteration depends on number
of states N and length of observation sequence T. In our experiment, value of N ranges
from 2 to 6 and average observation sequence length is 92,130. The training time of
HMM ranges from 5 mins for N =2 to 48 minutes For N = 6. Figure 23 shows the training

time taken in seconds to create models with N ranging from 2 to 6.

CS298 Report 50 Fall 2008

Sharmidha Govindaraj Metamorphic Detection

400

350

300

250

200

150 # Time in Minutes

Training Time in Minutes

100

50

Number of States N

Figure 24. Training time of 25 models for 800 iterations
Source: Author’s Research

6.4 Comparison of our method with Wong’s Method

To determine the efficiency and accuracy of our method, our results are compared with
Wong’'s method. The observation sequence length and training time are compared in
figures 24 and 25 (page 58) respectively. The comparison shows that our method
produces smaller opcode sequence since we extracted only 14 MFO opcodes which
eventually results in lesser training time. Using our method, the training time is reduced

by 60%. So, our method shows significant improvement in efficiency.

CS298 Report 51 Fall 2008

Sharmidha Govindaraj Metamorphic Detection

100000
g,, 80000
3 M Our Method
Q
§ 60000 W Wong's Method
=
3
o 40000 -
el
o
(5]
o
© 20000

0 '
2 3 4 5 6
Number of States N

Figure 25. Comparison of opcode sequence length T in both methods
Source: Author’s Research

400 -

350 -

300

250

200

M Our Method

150 - B Wong's method
100 -
50
0 -
2 3 4 5 6

Number of States N

Training Time in Minutes

Figure 26. Comparison of HMM training time in both methods
Source: Author’s Research

The total HMM training time is on average 4.5 hours for our method and 14.5 hours for
Wong’s method. Also, our program detects opcodes in the executables in less than 5

CS298 Report 52 Fall 2008

Sharmidha Govindaraj Metamorphic Detection

minutes in comparison to IDApro disassembling which takes on average 1.5 hours for
same set of files. For the entire experiment, our method took only 4.5 hours compared
to 16 hours for Wong’s method. In summary, the overall performance is improved by

70% with our method when compared to Wong’s method.

In addition to performance, there is a clear distinction of scores between family viruses
and non-members in our method. With threshold set at -2.07, there are only 2 FP
predictions and no FN predictions resulting in 100% detection rate. In Wong’s method,
there is some interleaving of scores between family viruses and normal files. With
threshold set at -5.4, there are 39 FP predictions and 7 FN predictions resulting in 97%
detection rate. This shows that accuracy is significantly improved in our method when
compared to Wong’s method. Figure 27 shows the number of false predictions in our

method and Wong’s method.

e=f==\\/ong's Method
== Our Method

Number of False Negative predictions

1 2 3 4 5

Number of States

Figure 27. Comparison of False Negative Prediction
Source: Author’s research

CS298 Report 53 Fall 2008

Sharmidha Govindaraj Metamorphic Detection

7. Conclusion

Our method extracts code section from the virus binary files, detects MFO instruction
opcodes, forms opcode sequence, trains HMM, and scores test files. After careful
analysis of the virus files, 14 MFO instructions were identified (Billar) and corresponding
opcodes are collected to produce opcode table. The produced opcode table was used
in the process of forming opcode sequence. As the table is precise and concise, it helps

to improve overall efficiency significantly.

Our method achieved the primary goal of this work. It completely eliminated the manual
process involved in the disassembling phase, reduced the total running time by 70%,

and significantly improved overall efficiency.

8. Future Work

We extracted only the code segment from the executables. It can be expanded to
include data segment which will be challenging as it includes data in addition to the
function codes we are interested. Also, our opcode table consists of fewer number of 1-
byte opcodes that are searched indiscriminately resulting in ~3% false positives. It can
be further improved by analyzing the virus assembly files and determining conditions to

identify 1-byte opcodes.

CS298 Report 54 Fall 2008

Sharmidha Govindaraj Metamorphic Detection

Appendix A: Bibliography

Billar, D. Statistical Structures: Fingerprinting Malware for Classification and
Analysis
http://cs.wellesley.edu/~dbilar/papers/Bilar_OpcodeDistribution_ICGeS07.pdf

Jordan, M. (2002). Anti-Virus Research - Dealing with Metamorphism, Virus Bulletin
http://ca.com/us/securityadvisor/documents/collateral.aspx?cid=48051

Kolter, J.Z., & Maloof,M.A.(2004) Learning to Detect Malicious Executables in the
Wild, In ACM Proceedings of the Tenth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, 470-478

Matt Pietrek (2002) An In-Depth Look into the Win32 Portable Executable File
Format
Part 1: http://msdn2.microsoft.com/en-us/magazine/cc301805.aspx
Part 2: http://msdn2.microsoft.com/en-us/magazine/cc301808.aspx

Microsoft Portable Executable and Common Object File Format Specification,
Revision 8.1, February 2008

Mohammed, M. (2003) Zeroing in on metamorphic computer viruses, masters thesis,
University of Louisiana at Lafayette
www.cacs.louisiana.edu/~arun/papers/moin-mohammed-thesis-dec2003.pdf

Stamp, M. (2004) A revealing introduction to hidden Markov models
www.cs.sjsu.edu/faculty/stamp/RUA/HMM.pdf

Stamp, M. (2006). Information Security: Principles and Practice, Wiley-Interscience

Szor, P. (2005). The Art of Computer Virus Research and Defense, Addison-Wesley

Szor, P., & Ferrie, P. (2001). Hunting for metamorphic, Symantec Security = Response
enterprisesecurity.symantec.com/PDF/metamorphic.pdf

Perriot, Szor, P., & Ferrie, P. (2002)Striking Similarites: Win32/Simile and
Metamorphic

Turner, D. et al.,(2008). Symantec Global Internet Security Threat Report Trends for

July—December 07, Volume XII

CS298 Report i Fall 2008

Sharmidha Govindaraj Metamorphic Detection

Wong, W. (2006). Analysis and detection of metamorphic computer viruses, masters
thesis, Department of Computer Science, San Jose State University

www.cs.sjsu.edu/faculty/stamp/students/Report.pdf

CS298 Report ii Fall 2008

Sharmidha Govindaraj Metamorphic Detection

Appendix B: Converged HMM Matrices

Table B- 1. Coverged HMM Matrices for N = 2 and Test Set 0

N=2, M=14, T=65538

| 1.00000000000000 0.00000000000000
A 0.97529089931559 0.02470910068450
0.07294422965863 0.92705577034146

call 0.11056864271285 0.01032365432858

B and 0.01145967815425 0.00000000000000

add 0.18800057580368 0.00039631434332

mov | 0.21328078353347 0.95689813171848

cmp | 0.03301040979904 0.00000000000000

jz 0.06610252853323 0.00000000000000

lea 0.02880279179210 0.03238189960963

retn | 0.06832909701597 0.00000000000000

jnz 0.03691201145227 0.00000000000000

jmp 0.04826955343759 0.00000000000000

push | 0.12836473711460 0.00000000000000

pop | 0.02806701922270 0.00000000000000

xor 0.02414499033569 0.00000000000000

test 0.01468718109252 0.00000000000000

Table B- 2. Coverged HMM Matrices for N = 2 and Test Set 1

N=2, M=14, T=65637

0.00000000000000 1.00000000000000

A 0.99023469357353 0.00976530642649
0.00517079384893 0.99482920615105
call 0.04138172849122 0.10732144082279
add 0.03279131576133 0.19815336386213

B cmp 0.00713632659984 0.03265250124626
jz 0.00000000000000 0.07525014019944
lea 0.03353125642709 0.02783380289300
mov 0.78330672606554 0.20080176000483
xor 0.00000000000000 0.02768944552793
jnz 0.00000000000000 0.04211587933240
jmp 0.00000000000000 0.05519274352290
pop 0.00000000000000 0.03204064411089
push | 0.06899283786000 0.11016834858514
retn 0.03285980879498 0.06120574059315
and 0.00000000000000 0.01328628016508
test 0.00000000000000 0.01628790913408

CS298 Report

fif

Fall 2008

Sharmidha Govindaraj

Table B- 3. Coverged HMM Matrices for N = 3 and Test Set 0

N=3, M=14, T=65538
0.00000000000000 1.00000000000000 0.00000000000000
0.70346079377318 0.29653920622679 0.00000000000000
0.07914393658555 0.91445966538834 0.00639639802613
0.00962002852435 0.00000000000000 0.99037997147564

B call 0.18044259546229 0.08754297795188 0.04019049649330
and 0.00448429829006 0.01540292005154 0.00000000000000
add 0.03860749464897 0.24155284859017 0.03234418078082
mov 0.02469929232564 0.25302357242172 0.78967988859470
cmp 0.00315211876847 0.04250330460559 0.00707130426832
jz 0.01007609703007 0.09340170221697 0.00000000000000
lea 0.01364679545996 0.03187212163422 0.03343588672210
retn 0.07481661944953 0.05715118751145 0.03145387119567
jnz 0.00000000040173 0.05377853338374 0.00000000000000
jmp 0.01349456618584 0.06643437646140 0.00000000000000
push 0.49741215965854 0.00000000000000 0.06582437194508
pop 0.13409826140688 0.00222230493117 0.00000000000000
xor 0.00479799349001 0.03379418116171 0.00000000000000
test 0.00027170742202 0.02131996907845 0.00000000000000

Metamorphic Detection

Table B- 4. Coverged HMM Matrices for N = 3 and Test Set 1

N=3, M=14, T=65637
1.00000000000000 0.00000000000000 0.00000000000000
0.70346079377318 0.29653920622679 0.00000000000000
0.07914393658555 0.91445966538834 0.00639639802613
0.00962002852435 0.00000000000000 0.99037997147564

B call 0.08867756472923 0.17378980549424 0.03999032275435
add 0.24121738466127 0.03794667554559 0.03246059846073
cmp 0.04101184800289 0.00177478727713 0.00711025515134
jz 0.09241896276235 0.01063289662025 0.00000000000000
lea 0.03188667648912 0.01347452830663 0.03362093725516
mov 0.25488566270350 0.02044655468201 0.78988948068637
xor 0.03378862068065 0.00468934596868 0.00000000000000
jnz 0.05332496381131 0.00025874665049 0.00000000000000
jmp 0.06621929897186 0.01336997690319 0.00000000000000
pop 0.00276033294822 0.13469898314905 0.00000000000000
push 0.00000000000000 0.50857789021476 0.06538067722100
retn 0.05831881713061 0.07320156127166 0.03154772847102
and 0.01562700800442 0.00433427248924 0.00000000000000
test 0.01986285910459 0.00280397542706 0.00000000000000

CS298 Report

Fall 2008

Sharmidha Govindaraj Metamorphic Detection

Table B- 5. Coverged HMM Matrices for N = 4 and Test Set 0

N=4, M=14, T=65538

1.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000
0.44045057521127 0.53973027295562 0.00000000000000 0.01981915183314
0.62792547362477 0.18618315452008 0.06922733549534 0.11666403635980
0.00000000000000 0.00000000000000 0.93607368937815 0.06392631062179
0.34692889141062 0.00000000000000 0.00000000000000 0.65307110858937

call 0.10436800534989 0.11822021256511 0.01027314932301 0.11612084862888

and 0.01349976044783 0.01245313695031 0.00000000000000 0.00522868141933
add 0.12144044526825 0.38719748586197 0.00028310901995 0.03441523285621
mov 0.43023595328126 0.00000428494713 0.94952037682505 0.02275571968959
cmp 0.06604882783370 0.00000000000000 0.00000000000000 0.00688387326382
jz 0.05917203374938 0.11726839434507 0.00000000000000 0.00244250914821
lea 0.02271307888903 0.04655973578208 0.03992336483199 0.00178900787395
retn 0.00000000261127 0.19447448317301 0.00000000000000 0.03303669112864
jnz 0.04796843467275 0.04358686152385 0.00000000000000 0.00038036414313
jmp 0.05028195162244 0.06789037513264 0.00000000000000 0.01315996772862
push 0.00000000000000 0.00000000000000 0.00000000000000 0.64946985760290
pop 0.01372077231028 0.00000000000000 0.00000000000000 0.10874111229134
xor 0.03990062711514 0.01234502971883 0.00000000000000 0.00557613422539
test 0.03065010684881 0.00000000000000 0.00000000000000 0.00000000000000

Table B- 6. Coverged HMM Matrices for N = 4 and Test Set 1

N=4, M=14, T=65637

0.00000000000000 0.00000000000000 0.00000000000000 _ 1.00000000000000
0.80883316869008 0.06320914331696 0.03559313923522 0.09236454875772
0.27355240608643 0.64178389969937 0.00000000000000 0.08466369421419
0.00000000000000 0.05901229599492 0.94098770400506 0.00000000000000
0.15518518785122 0.06191124864767 0.00000000000000 0.78290356350103
call 0.12685046243687 0.11199929673836 0.00853612550654 0.07280030502653
add 0.23323765834646 0.01851037291423 0.00000000000000 0.20897318307602
cmp 0.00051981304233 0.02147360786514 0.00000000000000 0.09134592516609
jz 0.00951432313309 0.01066382234148 0.00000000000000 0.19608849354750
lea 0.04699127266348 0.00000000000000 0.02799478588275 0.02116523853286
mov 0.41101127083640 0.00407452652008 0.96346908861070 0.05420224430150
xor 0.01041078461638 0.00447553751546 0.00000000000000 0.05970641577765
jnz 0.00847781584294 0.00075510653538 0.00000000000000 0.10764786651215
jmp 0.02473783521184 0.01120702111540 0.00000000000000 0.11054120772494
pop 0.00693284728153 0.12426754287804 0.00000000000000 0.00000000024898
push 0.00000000000000 0.65300481051350 0.00000000000000 0.00000000000000
retn 0.10885509567445 0.03444266696595 0.00000000000000 0.01633128223171
and 0.00772252853900 0.00335420883476 0.00000000000000 0.0230884120800
test 0.00473829237528 0.00177147926222 0.00000000000000 0.03810942577395

CS298 Report

Fall 2008

Sharmidha Govindaraj Metamorphic Detection

Table B- 7. Coverged HMM Matrices for N = 5 and Test Set 0

N=5, M=14, T=65538

0.00000000000000 0.00000000000000 1.00000000000000 0.00000000000000

0.00000000000000

0.9405214315319
0.1129644367010
0.0000000000000
0.0000000000000
0.0000000000000

0.00000000000000
0.70298632458623
0.00000000000000
0.00000000000000
0.16901480782446

0.00000000000000
0.09892001655545
0.79609378295742
0.12417740830274
0.10904631245805

0.05947856846809
0.05531723665474
0.06543191922219
0.61586286167349
0.06774692082023

0.00000000000000
0.02981198550257
0.13847429782046
0.25995973002377
0.65419195889725

call 0.01056237299509 0.00000000151958 0.08555187476068 0.09267881503836 0.20923462951049
and 0.00000000000000 0.01524718919793 0.02162219579171 0.00509363523682 0.00058701342624
B add 0.00000000000000 0.45736257029521 0.21841193435418 0.03472486592215 0.08567076329304
mov 0.96541995985256 0.32951107919369 0.06029850748439 0.00000000000000 0.49279248754508
cmp 0.00000000000000 0.00000000000000 0.07921147534479 0.01712096169939 0.00492726978894
jz 0.00000000000000 0.01951138082775 0.17251284419881 0.00594289633036 0.00000000000000
lea 0.02401766715236 0.09208425527757 0.04100052758162 0.00191262451608 0.00436475670059
retn 0.00000000000000 0.04667059388427 0.02742919903069 0.02172002194133 0.15532636270807
jnz 0.00000000000000 0.00000000000000 0.10327137331020 0.00000000000000 0.00000000000000
jmp 0.00000000000000 0.01529291004272 0.09963315594656 0.00798581331095 0.02856757841450
push 0.00000000000000 0.00000000000000 0.00000000000000 0.68180914402532 0.00000000000000
pop 0.00000000000000 0.00000000000000 0.00131185622475 0.12620848711047 0.01281949026622
xor 0.00000000000000 0.01730019345761 0.05199841067901 0.00480273486877 0.00570964834679
test 0.00000000000000 0.00701982630365 0.03774664529266 0.00000000000000 0.00000000000000

Table B- 8. Coverged HMM Matrices for N = 5 and Test Set 1

N=5, M=14, T=65637

| 0.00000000000000 1.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000

A | 0.64262392510210
0.07029776430647
0.06593363140192
0.06153810783160
0.05127506960621

0.13305877596495 0.00000000000000 0.00000000000000 0.22431729893291
0.83694713112539 0.00000000000000 0.00000000000000 0.09275510456816
0.28377975032280 0.00686837680517 0.64341824147011 0.00000000000000
0.00000000000000 0.00000000000000 0.93846189216840 0.00000000000000
0.07036255303579 0.0573136406037 0.00000000000000 0.82104873675419

B call 0.11414312762067 0.09178780664076 0.00000000000000 0.00000000000000 0.1212773367205
add 0.01839111716720 0.22139415067586 0.00000000000000 0.00000000000000 0.2162526399498
cmp 0.01902016801018 0.06980192768685 0.00000000000000 0.00000000000000 0.0010256620639
jz 0.00531781714927 0.15392450397864 0.00000000000000 0.00000000000000 0.0082371275539
lea 0.00107196862260 0.03455297850306 1.00000000000000 0.00000000000000 0.0000000000000
mov 0.00170007141622 0.09216764637624 0.00000000000000 1.00000000000000 0.51117361573010
xor 0.00372769157841 0.05030631107538 0.00000000000000 0.00000000000000 0.0078690458847
jnz 0.00000000014669 0.09281179061727 0.00000000000000 0.00000000000000 0.0000000000000
jmp 0.00986206845249 0.09799374859572 0.00000000000000 0.00000000000000 0.01665250939040
pop 0.12110891030325 0.00168433880047 0.00000000000000 0.00000000000000 0.00865846380033
push 0.66134786029249 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000
retn 0.04108521449830 0.04076323009906 0.00000000000000 0.00000000000000 0.09930854452460
and 0.00272393218346 0.02057069727973 0.00000000000000 0.00000000000000 0.00652867029279

test

0.00050005255879

0.03224086967097 0.00000000000000 0.00000000000000 0.00301638408870

CS298 Report

Vi

Fall 2008

Sharmidha Govindaraj

Table B- 9. Coverged HMM Matrices for N = 6 and Test Set 0

Metamorphic Detection

N=6, M=14, T=65538

0.00000000000000

1.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000

0.74654207880452
0.02060514556199
0.00000000000000
0.00000000000000
0.17068522563537
0.00000000000000

0.06015696292670
0.78892780154198
0.09872443224713
0.24213284361941
0.11758994250491
0.00000000000000

0.04465832656218
0.05844976057459
0.56509608986430
0.00710552510345
0.09298246310421
0.05739856445345

0.11643327108490
0.00000000000000
0.00000000000000
0.00000000000000
0.00000000000000
0.00000000000000

0.03220936062184
0.13201729232145
0.33617947788853
0.02958095288687
0.61874236875556
0.00000000000000

0.00000000000000
0.00000000000000
0.00000000000000
0.72118067839026
0.00000000000000
0.94260143554657

call
and
add
mov
cmp

lea
retn
jnz
jmp
push
pop
xor
test

0.00000000000000
0.01379599847082
0.38675138566697
0.42371179827650
0.00000000000000
jz 0.02253365781221
0.00000000000000
0.08894246264290
0.00000000000000
0.03388174710212
0.00000000000000
0.00000000000000
0.02053220621472
0.00985074381389

0.07963980903354 0.04474903481381 0.00000000000000 0.2726749917285 0.01054750258092
0.02259540505228 0.00558907307631 0.00000000000000 0.0004359338601 0.00000000000000
0.21282350028897 0.03986379770185 0.27309104766597 0.0739491617351 0.00000000000000
0.05194811358821 0.00000000000000 0.00000000000000 0.4178819850247 0.97785286398327
0.08312910828087 0.01519714332158 0.00000000000000 0.0113982201845 0.00000000000000
0.17868171055175 0.00200425425423 0.00000000000000 0.0083749572690 0.00000000000000
0.03668926127124 0.00000000000000 0.72530432647419 0.0203587104885 0.01159963343582
0.02453665903854 0.00000000000000 0.00000000000000 0.1450387602515 0.00000000000000
0.11272898499177 0.00000000000335 0.00000000000000 0.0000000000000 0.00000000000000
0.10379847545280 0.00779811304391 0.00160462585985 0.0197130677633 0.00000000000000
0.00000000000000 0.75945600474962 0.00000000000000 0.0000000000106 0.00000000000000
0.00002764719045 0.11947591062144 0.00000000000000 0.0278200833764 0.00000000000000
0.05507378660489 0.00586666841388 0.00000000000000 0.0023540626160 0.00000000000000
0.03832753865470 0.00000000000000 0.00000000000000 0.0000000656915 0.00000000000000

CS298 Report

vii

Fall 2008

Sharmidha Govindaraj Metamorphic Detection

Table B- 10. Coverged HMM Matrices for N = 6 and Test Set 1

N=6, M=14, T=65637

| 1.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000

0.79902575937822 0.06884299516905 0.00000000000000 0.00395962775884 0.06656516435248 0.06160645334139
A 0.00004962226266 0.05402429439583 0.50987354539271 0.14656884949096 0.15294718165373 0.13653650680411
0.00000000000000 0.00000000000000 0.94315591906849 0.00000000000000 0.00000000000000 0.05684408093152
0.21315790437331 0.00000000000000 0.00000000000000 0.49708269885924 0.21023608262221 0.07952331414521
0.00001369512679 0.00000000000000 0.00000000000000 0.93787525245430 0.06052839468865 0.00158265773027
0.27132909596639 0.00000000000000 0.00000000000000 0.02130601346098 0.06433438422900 0.64303050634357

B Call 0.13186949046900 0.00000000000000 0.01033245540491 0.0960162971704 0.0414220481090 0.11261960836740
Add 0.22409281811031 0.33135053413181 0.00000000000000 0.1833326392870 0.2675745644057 0.01850064871170
Cmp 0.00325621138480 0.00000000000000 0.00000000000000 0.0000000000000 0.2670579038232 0.01856606136724
Jz 0.01673161748286 0.00000000000000 0.00000000000000 0.2677942538386 0.00350450874660.00792665991814
Lea 0.00529078865858 0.66864946586819 0.01319064156814 0.0182121989531 0.0567012442008 0.00065911286116
Mov 0.43823259448582 0.00000000000000 0.97647690302694 0.0468122413825 0.07486844720890.00037493358845
Xor 0.01264762393210 0.00000000000000 0.00000000000000 0.0294594620569 0.1089340239043 0.00559008139898
Jnz 0.00000000000000 0.00000000000000 0.00000000000000 0.1741889487909 0.00000000000000.00262644652140
Jmp 0.03387824544811 0.00000000000000 0.00000000000000 0.1223503779078 0.04098827167030.01186122068469
Pop 0.00890641093102 0.00000000000000 0.00000000000000 0.0000000000000 0.0053662408508 0.11957216373433
Push 0.00000000000000 0.00000000000000 0.00000000000000 0.0000000000000 0.0000000000791 0.66099864418808
Retn 0.11157074655939 0.00000000000000 0.00000000000000 0.0308303051582 0.0137436214224 0.03607282455750
And 0.01034303858470 0.00000000000000 0.00000000000000 0.0286673453200 0.0000000000000 0.00333377158292
Test 0.00318041395330 0.00000000000000 0.00000000000000 0.0023359301341 0.1198391255784 0.00129782251794

CS298 Report viii Fall 2008

Sharmidha Govindaraj

Appendix C: HMM Testing Results

Metamorphic Detection

Test Set 0, N=2
_1 T T T

1.2 JL 10 20 30

-1.4

-1.6
o 18
3 ”"‘““"‘_‘“0 PR TR AN AT IR
o []
=) -

2.4 = R g
AMAY A K .
Y Y N7 at0a" 1naa, 1“'.'- ",

A = Em Em

-2.8

-3
File Number

@ Family Virus
B Normal Files

A Non-Family Virus

Figure C- 1 LLPO Scores of Family Virus, Normal Files and Non-Family Virus for test set 0 and N =

2
Source: Author’s research

Test Set1,N=3

-1.2 5 10 15

-14

-1.6

LLPO Score

Fiile Number

@ Family Virus
B Normal Files

A Non Family Virus

Figure C- 2 LLPO Scores of Family Virus, Normal Files and Non-Family Virus for test set 1 and N =

3
Source: Author’s research

CS298 Report iX

Fall 2008

Sharmidha Govindaraj Metamorphic Detection

Test Set 3, N=4

-1 T T T T T T T 1
10 15 20 25 30 35 40

12 0 5

-1.4

-1.6
L 00,094,900 4,0000% (0 %0 0 1 leee?
' * @ Family Virus

B Normal Files

LLPO Score

A Non Family Virus

Fiile Number

Figure C- 3 LLPO Scores of Family Virus, Normal Files and Non-Family Virus for test set 3 and N =

4
Source: Author’s research

Test Set 3, N=5

-1 T T T T T T T 1
12 G 5 10 15 20 25 30 35 40
-14
-1.6 L 4
L £ 2 L
@ Family Virus
-2

B Normal Files

LLPO Score

_ A

A Non Family Virus

Fiile Number

Figure C-4 LLPO Scores of Family Virus, Normal Files and Non-Family Virus for test set 3 and N =

5
Source: Author

CS298 Report X Fall 2008

Sharmidha Govindaraj Metamorphic Detection

Test Set 4, N=6

1
120 10 20 30 40

-1.4
@ Family Virus

H Normal Files

-1.6
3 J \J
13 ¢%*¢ 0“0’.““ “0“0“0 ’N“.”’ oo
2 - 14 Non Family Virus

2.2 T .
| u

-2.4 h “m
oo e g™ W STE .5 § pm mm,
-2.6 - m | -

LLPO Score

-2.8
3

File Number

Figure C- 5 LLPO Scores of Family Virus, Normal Files and Non-Family Virus for test set 4 and N =
6
Source: Author’s research

CS298 Report Xi Fall 2008

