

Practical Detection of Metamorphic

Computer Viruses

A Writing Project

 Presented to

The Faculty of the Department of Computer Science

San Jose State University

By

Sharmidha Govindaraj

December 2008

Approved by: Department of Computer Science
 College of Science

 San Jose State University
 San Jose, CA

Dr. Mark Stamp

Dr. Robert Chun

Mr. Manikandan Veerachamy, CISCO systems

Acknowledgements

I would like to sincerely thank my advisor Dr. Mark Stamp for his expert guidance,

thoughtful insights and bountiful patience without which this research is impossible. I

would also like to thank him for introducing me to this interesting world of information

security. I would also like to thank my committee members Dr. Robert Chun and Mr.

Manikandan for taking time to read through my thesis and providing valuable

comments.

Also, I’m grateful to my loving husband Vetri for his endless love and constant

encouragement which provided me vast energy throughout my graduate studies.

Special thanks to my adorable little one Dharshan for adapting to my tight schedules

and sacrificing his play-time with me.

Abstract

Metamorphic virus employs code obfuscation techniques to mutate itself. It absconds

from signature-based detection system by modifying internal structure without

compromising original functionality. However, it has been proved that machine learning

technique like Hidden Markov model (HMM) can detect such viruses with high

probability. HMM is a state machine where each state observes the input data with

appropriate observation probability. HMM learns statistical properties of “virus features”

rather than “signatures” and relies on such statistics to detect same family virus. Each

HMM is trained with variants of same family viruses that are generated by same

metamorphic engine so that HMM can detect similar viruses with high probability when

encountered later on.

Previous HMM-based detection techniques have relied on opcode sequences which are

obtained by disassembling the binary (executable) code. Such an approach is

impractical, since the disassembly process is slow, and this process must be applied to

each file when scanning for viruses. In this paper, we develop a practical HMM-based

metamorphic virus detector. We efficiently parses a Windows PE file and generate an

approximate opcode sequence which is then used for scoring against the HMM. The

results show that our method produce opcode sequences effectively, eliminate time-

consuming disassembling phase, reduce training time of HMM by 70% and produce

clear separation of scores between family virus and non-members.

Table of Contents

1. Introduction ..1

2. Viruses and their types..2

2.1 Metamorphic Virus ... 3

2.1.1 Simple Substitution..5

2.1.2 Instruction Reordering ...6

2.1.3 Dead Code Insertion ...7

2.1.4 Register Usage exchange ...8

2.1.5 Reordering Subroutines ..9

2.2 Other viruses.. 10

3. Metamorphic virus and their detection techniques10

3.1 Hidden Markov Models .. 11

4. Metamorphic detection with HMM ..13

5. Efficient preprocessing of metamorphic virus executables14

5.1 Extraction of code segments from Virus executables....................................... 15

5.1.1 PE executable format ..15

5.1.2 PE Code Segment Extraction..20

5.1.3 DOS executable Format..23

5.2 Preprocessing of Code Segment and Opcode extraction 23

5.2.1 Intel x86 Instruction Set...24

5.2.2 Preprocessing of executable code segment ...26

5.3 Creating Opcode sequence.. 33

5.4 Training and Testing HMM... 35

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 2 Fall 2008

6. Experiment Setup and Results..36

6.1 Experiment Setup... 37

6.2 Experiment Results I .. 38

6.3 Experiment Results II from Wong’s method ... 47

6.4 Comparison of our method with Wong’s Method.. 51

7. Conclusion..54

8. Future Work ..54

Appendices

Appendix A: Bibliography .. i

Appendix B: Converged HMM Matrices .. iii

Appendix C: HMM Testing Results.. ix

List of Tables and Figures

Tables

Table 1. PE file Header ...17

Table 2. PE Section Header Fields ...18

Table 3. PE Section Header Characteristic Flags ...19

Table 4. Registers and corresponding register encodings ...26

Table 5. Frequency of Occurrence of 14 MFO opcodes in different malwares ...29

Table 6. Experiment Setup...38

Table 7. LLPO scores of 40 family viruses and 40 normal files (compare set) using model 160_0BS_N2_E0...........39

Table 8. Minimum score of NGVCK family viruses, maximum score of non-member files and threshold assigned by

model ...42

Table 9. Thresholds and False Predictions ..44

Table 10. Transposed B matrix for N = 2 and Test set 2..46

Table 11. False Predictions for threshold = -5.4...49

Tables in Appendices

Table B- 1. Coverged HMM Matrices for N = 2 and Test Set 0 ... iii

Table B- 2. Coverged HMM Matrices for N = 2 and Test Set 1 ... iii

Table B- 3. Coverged HMM Matrices for N = 3 and Test Set 0 ... iv

Table B- 4. Coverged HMM Matrices for N = 3 and Test Set 1 ... iv

Table B- 5. Coverged HMM Matrices for N = 4 and Test Set 0 ..v

Table B- 6. Coverged HMM Matrices for N = 4 and Test Set 1 ..v

Table B- 7. Coverged HMM Matrices for N = 5 and Test Set 0 ... vi

Table B- 8. Coverged HMM Matrices for N = 5 and Test Set 1 ... vi

Table B- 9. Coverged HMM Matrices for N = 6 and Test Set 0 .. vii

Table B- 10. Coverged HMM Matrices for N = 6 and Test Set 1 .. viii

Figures

Figure 1. New Malicious Code threats ...2

Figure 2. Different forms of a metamorphic virus ..4

Figure 3. Simple Substitution ...5

Figure 4. Instruction reordering ..6

Figure 5. Dead code insertion ...7

Figure 6. Register usage exchange ..8

Figure 7. Reordering subroutines..9

Figure 8. Hidden Markov Model ..12

Figure 9. Preprocessing of virus files ..13

Figure 10. PE executable format Layout ...16

Figure 11 Detailed Layout of PE executable ...20

Figure 13. Intel instruction format..24

Figure 14. Frequency of Occurrence of 14 MFO opcodes in normal files (in percentage) ..27

Figure 15. Frequency of Occurrence of 14 MFO opcodes in Malwares (in percentage) ...28

Figure 16. Convert 1-byte opcode to 2-byte opcode for ADD r8/m8, imm8..30

Figure 17. Flow Diagram for MFO Opcode Detection ...32

Figure 18. Training and classifying process ..36

Figure 19. Log Likelihood per Opcode (LLPO) of family viruses, non-family viruses and normal files40

Figure 20. Training time of 25 models for 800 iterations ..45

Figure 21. Probability distribution of observation symbols in each state for N = 2 and test set 247

Figure 22. Log Likelihood per Opcode (LLPO) of family viruses, non-family viruses and normal files48

Figure 23. Number of false predictions at each state N ..50

Figure 24. Training time of 25 models for 800 iterations ...51

Figure 25. Comparison of opcode sequence length T in both methods ..52

Figure 26. Comparison of HMM training time in both methods ...52

Figure 27. Comparison of False Negative Prediction ...53

Figures in Appendices

Figure C- 1 LLPO Scores of Family Virus, Normal Files and Non-Family Virus for test set 0 and N = 2....................... ix

Figure C- 2 LLPO Scores of Family Virus, Normal Files and Non-Family Virus for test set 1 and N = 3....................... ix

Figure C- 3 LLPO Scores of Family Virus, Normal Files and Non-Family Virus for test set 3 and N = 4........................x

Figure C- 4 LLPO Scores of Family Virus, Normal Files and Non-Family Virus for test set 3 and N = 5.......................x

Figure C- 5 LLPO Scores of Family Virus, Normal Files and Non-Family Virus for test set 4 and N = 6....................... xi

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 1 Fall 2008

1. Introduction

In today’s electronically connected digital world, data is stored in the connected

storages and shared globally. Modern technology has changed the way we learn, work,

play, and live but it does not offer luxury of high availability and accessibility without

endangering the security and privacy of information. No matter how secure data is

stored and accessed, information still get stolen. Everyday and every second,

somebody in the world has his/her identity and money seized. Even worse, information

which is worth lots of time, energy, and resources is completely wiped out by malicious

programs causing huge loss. As we all understand, the modern digital world poses

multifaceted vulnerabilities, a major concern is to protect data from being corrupted or

destroyed by malicious codes.

Malicious code is “any code added, changed, or removed from a software system to

intentionally cause harm or subvert the system's intended function" (Jordan, 2002).

Malicious code can be classified as virus, worm, Trojan, backdoors, and so on.

Although all malicious codes are commonly called virus, each of the above term mean a

type of attack the malicious code perform. For our purpose, we refer the commonly

used term ‘virus’ to address all malicious codes in discussion for this project. Computer

viruses have been consistently evolving. Each new generation of viruses poses new

challenges for antivirus developers. Fortunately, antivirus developers do rise to the

challenges and devises a method to protect data from viruses as they show up.

Our research focuses on a specific type of virus called metamorphic virus that uses

obfuscating techniques to mutate itself. We will discuss further about detecting

metamorphic viruses and enhancing one of the detection technique called Hidden

Markov Models (HMM).

The organization of this report is as follows; Section 2 covers viruses and their types

with an emphasis on metamorphic virus (with examples); Section 3 covers available

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 2 Fall 2008

detection techniques with an emphasis on HMM; Section 4 covers our research on

detecting metamorphic viruses more practically and efficiently using HMM; Section 5

covers the training and testing of HMM; and finally, Section 6 covers the discussion of

results.

Figure 1 shows number of new malicious threats every year.

Figure 1. New Malicious Code threats
Source: Turner et al., 2008

2. Viruses and their types

Viruses are malicious programs that have threatened the world of computers for about

thirty years; and will be more challenging than ever before. As the modern viruses

present new challenges, the antivirus community is constantly putting efforts to

understand, learn, and develop new antivirus kits to detect and remove viruses. There

are many types of viruses with different risk levels we have discovered.

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 3 Fall 2008

Some of well known viruses are

• Boot sector virus

• Polymorphic virus

• Macro virus

• Metamorphic virus

The following section explains in-depth details of metamorphic virus followed by brief

introduction to other viruses.

2.1 Metamorphic Virus

Metamorphic viruses are viruses that mutate itself with the use of metamorphic engine

that come along with virus code. These viruses are a new generation of viruses that

escape signature detection techniques, as the shape of virus body is changed every

time when it infects. To explain in short, metamorphic viruses mutate its body and

change the internal structure preserving the functionality of virus.

Such metamorphism is employed by obfuscating the code using different techniques.

Five of the techniques are listed below (Mohammed, 2003).

• Simple Substitution

• Instruction Reordering

• Dead code Insertion

• Register usage exchange

• Reordering subroutines

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 4 Fall 2008

Figure 2 shows different shapes of virus body in each mutation (Szor, 2002).

Figure 2. Different forms of a metamorphic virus
Source: Szor, 2001

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 5 Fall 2008

2.1.1 Simple Substitution

This technique allows for the substitution of an instruction or a block of code with an

equivalent instruction or a block of code. To accomplish this technique, the

metamorphic generator must maintain a dictionary of instructions and their equivalents.

An example showing how substitution is done is illustrated in figure 3 below.

Figure 3. Simple Substitution
Source: Author’s Research

 Original Code

 push eax

 push ebx

 push ecx

 push edx

 push esi

 push edi

 push ebp

 mov ebp, 0

 mov eax, 1

 CPUID

 cmp ax, 0F20h

 jb error

 clc

 mov di, ax

 mov ecx, 02Ch

 RDMSR

 shr eax, 16

 and al, 00000111b

 movzx bx, al

 shl bx, 1

 mov [si], bx

error: pop ebp

 pop esi

 pop edi

 pop edx

 pop ecx

 pop ebx

 pop eax

Obfuscated by

Simple

Substitution

Code obfuscated through instruction
substitution

 xor ebp, ebp

 xor eax, eax

 or eax, 1

 CPUID

 mov bx, ax

 cmp bx, 0F20h

 jb error

 lahf

 and af, 0FEh

 sahf

 mov di, bx

 mov bx, 02ch

 movzx ecx, bx

 RDMSR

 rol eax, 16

 and al, 00000111b

 xor bx, bx

 mov bl, al

 shl bx, 1

 mov [si], bx

error: popad

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 6 Fall 2008

2.1.2 Instruction Reordering

Reordering instructions and inserting unconditional branches or jumps using GOTO

statements is one way of metamorphism employed in virus body. Reordering can also

be done by reordering the independent instructions in the same way compilers do.

Figure 4 below illustrates an example of instruction reordering.

Figure 4. Instruction reordering
Source: Author’s Research

 Original Code

 mov ax, 0A000h

 mov es, ax

 xor edi, edi

 push 0

 pop ds

 mov esi, 0B000h

 mov ecx, 64 * 1024

 shr ecx, 02h

 rep movsd es:[edi], ds:[esi]

 Code obfuscated through instruction

 reordering
 mov ax, 0A000h
 jmp s1
 s2: jmp s3
 s4: mov esi, 0B000h
 jmp s5
 s1: mov es, ax
 xor edi, edi
 jmp s2

 s3: push 0

 pop ds

 jmp s4
 s6: shr ecx, 02h
 jmp s7
 s5: mov ecx, 64 * 1024
 jmp s6
 s7: rep movsd
 es:[edi], ds:[esi]

Obfuscated by

Instruction

Reordering

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 7 Fall 2008

2.1.3 Dead Code Insertion

This technique inserts do-nothing or garbage instructions like NOP inside the virus

body without altering original functionality. This is one of the easiest techniques to

obfuscate the code section and the easiest to detect as the actual virus code is not

rearranged. Dead code insertion is illustrated in Figure 5.

Figure 5. Dead code insertion

Source: Author’s Research

 Original Code

 mov ebx, 0F5h

 push edx

 push eax

 mov eax, 75h

 mul ebx

 inc eax

 adc edx, 0

 mov ebx, eax

 mov ecx, edx

 pop eax

 pop edx

 neg ebx

 mov [esi], ebx

Obfuscated

by Dead

Code

Insertion

 Code obfuscated through Dead Code

Insertion
 mov ebx, 0F5h

 push ebx

 add ebx, 1

 sub ebx, 1

 pop ebx

 push edx

 push eax

 mov eax, 75h

 rol eax, 16

 ror eax, 16

 mul ebx

 inc eax

 add esi, 0

 adc edx, 0

 mov ebx, eax

 mov ecx, edx

 push ecx

 mov ecx, 1

l1: loop l1

 pop ecx

 pop eax

 jmp s1

s1: pop edx

 nop

 nop

 neg ebx

 xchg ebx, edx

 xchg edx, ebx

 mov [esi], ebx

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 8 Fall 2008

2.1.4 Register Usage exchange

Register Usage Exchange is a technique which involves changing usage of registers in

the code without modifying the flow of code. This technique often requires adding more

instructions for resetting or restoring the state of the registers. It seems to be more

complex compared to other techniques as it requires knowledge of processor registers

and supported instruction sets along with the ability to parse the binary code section

and identify the register usage. Figure 6 below illustrates register usage exchange.

Note: EBX replaced with ESI and EDX replaced with EDI

Figure 6. Register usage exchange
Source: Author’s Research

 Original Code

 mov ebx, 0F5h

 push edx

 push eax

 mov eax, 75h

 mul ebx

 inc eax

 adc edx, 0

 mov ebx, eax

 mov ecx, edx

 pop eax

 pop edx

 neg ebx

 mov [esi],ebx

Code obfuscated through register

reassignment

 push esi

 mov esi, 0F5h

 push edi

 push edx

 push eax

 mov eax, 75h

 mul esi

 inc eax

 mov edi, edx

 adc edi, 0

 mov esi, eax

 mov ecx, edi

 pop eax

 pop edx

 pop edi

 neg esi

 mov ebx, esi

 pop esi

 mov [esi], ebx

Obfuscated

by

exchanging

registers

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 9 Fall 2008

2.1.5 Reordering Subroutines

Obviously, using this technique, metamorphic engine reorders subroutines and thus

changes the structure of the code. The above technique is another simple technique to

obfuscate the shape of the virus. Reordering Subroutines is illustrated in figure 7 below.

Figure 7. Reordering subroutines
Source: Author’s Research

Original Code

 count_0s_eax PROC

 push eax

 push edx

 xor ebx

 mov ecx, 32

 i1: shr eax, 1

 jc i2

 inc ebx

 i2: loop i1

 pop eax

 pop edx

 ret

 count_0s_eax ENDP

 multiply_ebx_by_5 PROC

 push eax

 push edx

 mov eax, 5

 mul ebx

 mov ebx, eax

 pop edx

 pop eax

 ret

 multiply_ebx_by_5 ENDP

 memory_copy PROC

 mov esi, 0A000h

 mov edi, 0B000h

 mov ecx, 10 * 1024

 rep movsd es:[edi],ds:[esi]

 memory_copy ENDP

 main PROC

 call count_0s_eax

 call multiply_bx_by_5

 call memory_copy

 ret

 main ENDP

 END main

Code obfuscated through instruction
reordering
 memory_copy PROC

 mov esi, 0A000h

 mov edi, 0B000h

 mov ecx, 10 * 1024

 rep movsd es:[edi],ds:[esi]

 memory_copy ENDP

 count_0s_eax PROC

 push eax

 push edx

 xor ebx

 mov ecx, 32

 i1: shr eax, 1

 jc i2

 inc ebx

 i2: loop i1

 pop eax

 pop edx

 ret

 count_0s_eax ENDP

 main PROC

 call count_0s_eax

 call multiply_bx_by_5

 call memory_copy

 ret

 main ENDP

 multiply_ebx_by_5 PROC

 push eax

 push edx

 mov eax, 5

 mul ebx

 mov ebx, eax

 pop edx

 pop eax

 ret

 multiply_ebx_by_5 ENDP

Obfuscated by

Reordering

Subroutines

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 10 Fall 2008

2.2 Other viruses

One of the oldest and popular viruses from the late 1980s is boot sector virus. It

replaces Master Boot Record (MBR) or boot sector in the hard drive with its own code.

The boot sector is a drive sector where the Operating System (OS) boot loader lives.

The Basic Input/Output System (BIOS) transfers control to the boot sector at the end of

Power-On Self-Test (POST) to hand off control to the OS while booting. Infecting the

boot sector enables the boot virus to gain the ability to take over the control whenever

the system boots, stay hidden in memory during runtime, and perform its malicious

activities.

One of the other popular and challenging viruses is polymorphic virus. It uses

encryption to get away from antivirus software that only uses simple signature detection

technique to detect viruses. Each polymorphic virus incorporates a decryptor at the top

of an execution flow so that the virus can decrypt the encrypted part of the code at first

and hand off the control to decrypted virus. As a polymorphic virus usually embeds the

decryptor at the beginning of the code section, it enables anti-virus scanners to look for

decryptor byte patterns at the beginning of a code section and detect the virus easily.

A Macro virus is a type of virus that mainly infects documents that are normally not

executable. It is written in a macro language that is supported by word processors and

email applications; this provides mechanism to embed macro programs within

documents and execute it whenever the document is opened. Modern Antivirus

software has the capability to detect such macro viruses.

3. Metamorphic virus and their detection techniques

As metamorphic viruses employ complicated techniques, many different methods have

been developed to detect metamorphic viruses. Each detection method has its own

pros and cons. Some of the detection techniques described in Symantec’s white paper

(Szor, 2001) are highlighted below.

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 11 Fall 2008

Geometric Detection technique relies on “shape heuristic”; this allows to find whether a

file is infected, or not, by learning the file structure of the virus and looking for learnt

structures in the infected files. Often, this technique is prone to false positives as it

simply learns the layout of the virus and does not learn about the virus at the instruction

level.

Code emulation is employed by creating a virtual machine which emulates the

underlying hardware including processor, memory, and peripherals and runs an

operating system. This technique detects viruses by running suspicious files on its guest

virtual machine and looks for any malicious activities and patterns. The above technique

has the ability to detect complicated viruses but it needs considerable system resources

to create a virtual machine.

The last and most successful technique is the Machine learning technique. This

technique uses the concept of data mining, neural networks, and HMM to learn the

structure of the virus at the instruction level. Though, data mining techniques produce

more false positives, neural networks and HMM have a very low rate of false positives.

As our research is focused on using HMM for metamorphic virus detection, HMM will be

discussed in detail in the following section.

3.1 Hidden Markov Models

The Hidden Markov Model is a state machine with a finite set of states, each of which is

associated with a probability distribution for certain observation symbols. This model is

called “Hidden” Markov Model because the external observer can only see the outcome

or the observation, and the state remains hidden. Transition between states is

associated with transition probability and an outcome, or observation is associated with

observation probability. HMMs are statistical learning techniques by which we can train

the model for particular observation sequence (opcode sequence from a program). After

training a HMM with a set of opcode sequence, the model gains the ability to detect

similar opcode sequence in a given input.

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 12 Fall 2008

The notations used in HMM are listed below.

T = the length of the observation sequence

N = the number of states in the model

M = the number of observation symbols

Q = the states of the Markov process {q0, q1, . . . , qN−1

V=set of possible observations {0, 1, . . . ,M −1}

A = the state transition probabilities matrix

B = the observation probability matrix

π = the initial state distribution matrix

O = (O0, O1, . . . ,OT−1) = observation sequence.

λ= (A, B, π) is a HMM model

Figure 8 below shows the Hidden Markov Model state transition where X is a hidden

state and O is observation sequence which an observer can see.

Figure 8. Hidden Markov Model
Source: Stamp, M., 2004

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 13 Fall 2008

4. Metamorphic detection with HMM

Initially, HMM is trained with variants of same family viruses (viruses generated with

same virus generation kit) during which HMM create a model for each family viruses.

Once training is completed, HMM use that model to detect whether a given file belongs

to particular family, or not. Before the training phase, a number of steps should be

carried out. Let us examine the steps involved in Wong and Stamp’s (2006) work; first,

different viruses are generated using virus generators; second, the generated viruses

are assembled using TASM 5.0 to create executables; and finally, the executables are

disassembled back into assembly code using IDA Pro. The above steps are illustrated

in Figure 9 below.

Figure 9. Preprocessing of virus files
Source: Wong and Stamp (2006)

Once disassembled, they extracted assembly opcode sequences from disassembled

ASM files and concatenated all the opcode sequences to form a single long sequence.

Finally, HMM was trained with the single concatenated sequence. Large collections of

metamorphic viruses generated by virus generator kits are grouped into different data

sets with each data set containing viruses generated by same Virus generation kit. Five

fold cross validation is applied to a data set and further subdivided into five subsets: four

being training sets and one being a test set; each time, a different train set and test set

is used. Training set viruses are used for HMM training and test set viruses are used to

test, or evaluate the performance of HMM in finding the same family virus.

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 14 Fall 2008

5. Efficient preprocessing of metamorphic virus executables

As explained in section 4, Wong and Stamp used IDA pro, a disassembler, to

disassemble the executables before extracting the opcode sequence for the training set.

This disassembling step is time-consuming, inefficient, and impractical when it involves

large numbers of virus files. An alternative method is to extract the opcode sequences

directly from executables and use the resultant sequence to train HMM.

Extracting opcode sequences programmatically from binary executables with no manual

work involved is very complicated, as the binary file is raw and, in most cases, data is

embedded within the code section. This research is focused on simplifying and

completely removing the manual work involved in the process of creating opcode

sequence and improving the efficiency of overall preprocessing. In our method, we

followed three consecutive steps to preprocess a virus file. The steps involved in the

method of preprocessing under discussion as are follows;

1. Extracting Code section: An executable may include a number of sections

such as code, data, and stack. As virus codes mostly lives only in code

section, we need to extract the code section from the executable file

discarding other sections. Though there are a lot of executable formats

currently in use, we have taken only Portable Executable (PE) format and

DOS executable format into consideration as these formats are most-used

popular formats.

2. Create opcode sequence: Analyze each virus file individually and determine

Most Frequently Occurred (MFO) mnemonics. Find out all possible opcodes

for MFO mnemonics and create a lookup table of MFO opcodes. The opcode

sequence is created directly from the executable files by scanning byte by

byte and checking if it falls into MFO opcodes by looking into the MFO

opcode table.

3. Concatenate opcode sequence: Finally, opcode sequences are divided into

data set and train set. All opcode sequences of data set are concatenated to

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 15 Fall 2008

form a single observation sequence. This observation sequence is used as

train set for HMM.

5.1 Extraction of code segments from Virus executables

5.1.1 PE executable format

PE executable (PE) format is a “file format for executables, object code, and DLLs, used

in 32-bit and 64-bit versions of Windows operating systems” (Wikipedia). I have

focused on PE executables as it is the most used and most vulnerable format being the

standard of windows OS. Before dealing with extraction of code segment from PE

executables, it is essential to discuss bits and pieces of PE file format to have a good

idea of PE executable. The subsequent sections describe PE format in detail and how

to extract code section from PE format compliant file. The format of a PE file is shown

figure 10 (Page 16).

MS DOS header

A PE file always starts with a MS DOS header that can be identified by a two-byte

signature represented in ASCII as “MZ” or in hex as “0x5A4D”. Though MS-DOS header

is comprised of many fields, e_magic and e_lfanew are the fields we are interested in.

e_magic field contains the signature of MS DOS header and e_lfanew contains Relative

Virtual Address (RVA) to PE header. It also includes a checksum file that can be used

to check the integrity of the header.

A MSDOS stub program is included in windows 32 and 64 bit format to display a

message “This program cannot be run in DOS mode” when PE executables are run

under MSDOS environment.

This header was embedded in PE executables to provide backward compatibility when

the industry was transitioning from DOS operating system to Windows operating

system.

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 16 Fall 2008

Figure 10. PE executable format Layout
Source: Microsoft PE specification, 2008

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 17 Fall 2008

PE header

The MS-DOS header is followed by PE header that contains a PE signature File header

and Optional Header. The PE signature is used to identify the PE header in a PE file

which is represented by a 4-byte value in ASCII as “PE” or in hex as “0x00004550”

Among the many fields file header contains, we are interested in two important fields.

Those fields and their usages are explained in Table 1.

Table 1. PE file Header

Source: Microsoft PE Specification, 2008

Since optional header is not required for our purpose, the field SizeOfOptionalHeader is

used to skip the optional header.

Section Header

Followed by the optional header is a section header that contains information about

different sections of the file. Table 2 shows all the fields in section header. Section

header is an array of structures where there is a structure for each section containing all

the fields as shown in table 2 (Page 18). The name field and characteristics field are

required to find the code section. The pointertorawdata and sizeofrawdata fields are

used to locate and extract the code section. Table 3 (Page 20) shows section header

characteristic flags.

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 18 Fall 2008

Table 2. PE Section Header Fields

Source: Microsoft PE Specification, 2008

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 19 Fall 2008

 Table 3. PE Section Header Characteristic Flags

 Source: Microsoft PE Specification, 2008

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 20 Fall 2008

Figure 11 shows the layout of PE executable in more detail with signatures, partitioned

file, and optional header and pointers from section header entry to appropriate sections.

Figure 11 Detailed Layout of PE executable
Source: Patriek, 2002

5.1.2 PE Code Segment Extraction

This section explains how our program extracts code segment from PE executables

with reference to actual codes. Figure 12 (page 22) demonstrates a high level execution

flow of code segment extraction.

First, the DOS header is read and the e_magic field is checked for MS DOS signature

“MZ” or “0x5A4D”. If the signature is valid, then we have to jump to PE header using the

address in e_lfanew field. Once the PE header is read from the file, the signature field is

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 21 Fall 2008

checked for PE signature “PE” or “0x00004550”. If the signature is valid, the file being

processed is confirmed as a PE executable file. Once PE header is located and

validated, the SizeOfOptionalHeader field is used to skip the optional header since

optional header is not required for our purpose. Now we have reached the section

header.

The section header is an array of structures where there is a structure for each section

in the file. So, to find the section header for code section, we have to compare the name

field to “.text” or characteristics field to “0x0000020”. As the name field is not

standardized, it is not named always “.text” and so we are checking for characteristics

field too. According to characteristics flags, “0x0000020” mean that the section contains

executable code. So, once the code section header is located, the field called

PointerToRawData is used to locate the code section, and the field called

SizeOfRawData is used to extract the code section.

After completing the code segment extraction, the program is tested with different input

exe files. All the tested files differ in size or number of code sections. Further testing is

conducted by using HexEdit and PEdump utilities, a dumping utility for executables. The

same exe files, which were used for testing our program is given as input to both of

these utilities. The output of our program is binary compared with utility outputs.

Comparison showed that our code worked flawlessly and extracted code segments

exactly.

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 22 Fall 2008

 Begin

e_magic=”MZ”

MS DOS header found Not a valid PE file

Jump to RVA in

e_lfanew field

Not a valid PE file PE header found &

file validated

skip optional header for

“SizeOfOptionalHeader” bytes

characteristics=

“0x0000020”

Jump to RVA in “PointertoRaw”

data field

Extract code section upto

“SizeOfRawData” bytes

End

End

Code section not found

End

End

yes

yes

yes

No

No

No

Figure 12. PE Code section extraction flow

Source: Author’s Research

Signature =

“0x00004550”

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 23 Fall 2008

5.1.3 DOS executable Format

Although DOS executables seem to be outdated, many early viruses, like G2 and

MPCGEN, are yet in the DOS executable form. MS DOS header in DOS executables is

exactly the same as in PE executables. For our purpose, we are required to read

following fields: e_magic, e_cblp, e_cp and e_ip. e_magic field contains the signature

represented in ASCII as “MZ” or in hex as “0x54AD”. This field is validated to check

whether the given file is a valid DOS file. If DOS executable signature is found, e_cp,

e_ip and e_cblp field are read from the header. e_ip field specify the offset where code

segment starts. e_cp field specify number of pages in the file where each page is 512

bytes long. e_cblp field specify number of bytes used in the last page of code segment.

Once we get the values of all the above fields, size of the code segment is calculated as

follows,

 Size of code segment = e_cp*512 - (512 - e_cblp)

Once size of code segment is calculated, extract the code section starting from the

offset pointed by e_ip.

5.2 Preprocessing of Code Segment and Opcode extraction

As discussed earlier, Wong and Stamp used IDApro, a disassembler, to create

disassembled ASM files and extract assembly opcode sequences from executable files.

One of the goals for this project is to eliminate time-consuming and inefficient

disassembling process.

With the code section of virus executables in hand, we started researching for methods

which doesn’t go through disassembling to extract assembly opcodes like MOV, ADD

and so on. We found two obvious alternatives. First method is Most Frequently

Occurred (MFO) opcode searching method which looks for the MFO opcodes in the

binary executable and creates the opcode sequence of MFO opcodes. Second method

is adding a part of disassembling code which disassembles on the fly with no manual

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 24 Fall 2008

intervention and extracting only the opcodes leaving behind operands. Of these two

alternatives, we selected the former approach because latter involves disassembling

and our major goal is to skip disassembling.

5.2.1 Intel x86 Instruction Set

A brief introduction to Intel x86 instruction set is required to understand low level details

of assembly instruction. Figure 13 shows Intel instruction format.

Each instruction consists of instruction prefixes, instruction opcode bytes, MOD value,

address displacement value and an immediate data. The format of an Intel x86

processor architecture based instruction is shown in the figure 13 below. The assembly

language commands corresponding to opcodes are called mnemonics. For example,

the assembly language command ADD is a mnemonic corresponding to the opcode

0x80.

Figure 13. Intel instruction format
Source: Intel Programmer’s Manual

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 25 Fall 2008

The purpose of different fields of an instruction set is described below.

1. Instruction prefixes are used as modifiers to the main command. Prefixes can be

used to repeat string operations, to provide segment overrides, and to change

operand and address sizes.

2. An opcode is a one or more bytes long binary representation of assembly

language mnemonic. While assembling, the assembler translates mnemonics to

corresponding codes.

3. Mod field allows specifying which of the general purpose registers or addressing

modes are used in an instruction.

4. Displacement field is used to provide a displacement value to an address

referred in an instruction. For example, an ADD instruction with a reference to an

address displaced by an offset 4056 can be represented as “ADD ax, [bp+di] +

4056”. The displacement can be 1, 2, or 4 bytes long.

5. An immediate operand is a constant, used as an operand in an instruction, which

can be a 1, 2, or 4 bytes value. In an instruction, “ADD ax, 10”, immediate

operand is 10.

Some of the basic properties of such instruction are as follows:

• The length of an assembled instruction varies based on number of fields and

size of each field used in an instruction.

• A single mnemonic may be translated into different opcodes based on the

type of operands used.

• The Mod field varies based on operand used.

• An operand can be a register, immediate, direct or indirect memory reference

with or without displacement.

• Some fields are optional.

There are three types of registers: 8-bit, 16-bit and 32-bit registers represented as r8,

r16 and r32. Table 4 below shows registers available in each type.

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 26 Fall 2008

Table 4. Registers and corresponding register encodings

Register
Encodings

r8 r16 r32

0 AL AX EAX

1 CL CX ECX

2 DL DX EDX

3 BL BX EBX

4 AH SP ESP

5 CH BP EBP

6 DH SI ESI

7 BH DI EDI

Source: Intel’s Programming Manual

5.2.2 Preprocessing of executable code segment

Since there are more than 100 instructions in Intel x86 instruction set, rather than

working on all those instructions, it is inevitable to take only the Most Frequently

Occurred (MFO) instructions into account for three important reasons:

1. It is time-consuming to collect binary opcodes covering the whole instruction

set to form opcode table.

2. The opcode table should be as small as possible to achieve better efficiency.

3. Training HMM with small set of MFO instruction opcodes allows HMM to find

patterns or features of virus effectively

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 27 Fall 2008

As per Billar, only fourteen instructions in entire Intel instruction set are MFO

instructions. Those instructions are ADD, AND, CALL, CMP, JMP, JNZ, JZ, LEA, MOV,

PUSH, POP, RETN, TEST and XOR. After a careful analysis, we found that using MFO

instructions enables HMM to learn some patterns in the virus code and detect viruses

more effectively. Figure 14 and 15 below shows the percentage of occurrence of 14

MFO opcodes in normal and malicious files respectively.

Figure 14. Frequency of Occurrence of 14 MFO opcodes in normal files (in percentage)
Source: Billar

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 28 Fall 2008

Figure 15. Frequency of Occurrence of 14 MFO opcodes in Malwares (in percentage)
Source: Billar

As demonstrated in figures 14 and 15, approximately 90% of total instructions used are

14 MFO instructions.

Billar et al. has also discussed the percentage of occurrence of 14 MFO opcodes in

different categories of malwares like Viruses, Worms, Trojans and Bots. Table 5 (page

27) shows the frequency of occurrence in percentage.

As the key idea in our approach is to search for a binary instruction opcode in the code

segment, there are possibilities for false predictions. For instance, when we search for a

1-byte binary opcode, it may potentially hit many operands with same byte value

resulting in false positives. In this context, false positive occurs when an operand or a

part of an irrelevant opcode is detected as an opcode in examination. For example, one

of the opcodes for JMP is 0xEB and one of the opcodes for SUB is 0xEB83. When an

operand 0xEB or the part of SUB opcode is detected as JMP, it is considered as a false

positive prediction.

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 29 Fall 2008

Table 5. Frequency of Occurrence of 14 MFO opcodes in different malwares

Opcode Goodware Bot Trojan Virus Worm

MOV 25.3% 34.6% 30.5% 16.1% 22.2%

PUSH 19.5% 14.1% 15.4% 22.7% 20.7%

CALL 8.7% 11.0% 10.0% 9.1% 8.7%

POP 6.3% 6.8% 7.3% 7.0% 6.2%

CMP 5.1% 3.6% 3.6% 5.9% 5.0%

JZ 4.3% 3.3% 3.5% 4.4% 4.0%

LEA 3.9% 2.6% 2.7% 5.5% 4.2%

TEST 3.2% 2.6% 3.4% 3.1% 3.0%

JMP 3.0% 3.0% 3.4% 2.7% 4.5%

ADD 3.0% 2.5% 3.0% 3.5% 3.0%

JNZ 2.6% 2.2% 2.6% 3.2% 3.2%

RETN 2.2% 3.0% 3.2% 2.0% 2.3%

XOR 1.9% 3.2% 2.7% 2.1% 2.3%

AND 1.35% 0.5% 0.6% 1.5% 1.6%

Source: Billar

As discussed earlier in Intel x86 instruction set, the length of an opcode varies based on

number of operands, types of registers and types of memory access used in an

instruction. It may be 1, 2, or more bytes in length. As it will be time consuming to

search for longer opcodes, after a careful analysis, it has been found that MFO

instructions are mostly 1 or 2 bytes long. Further, we discovered that more the number

of 2-byte opcodes used to identify MFO opcodes, better the accuracy. Due to the fact

that the probability for an operand or data to have the same value as the two-byte

opcode is less, we have tried to extend 1-byte opcodes to 2-byte opcodes. The 1-byte

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 30 Fall 2008

opcode that can not be converted into 2-byte opcode should be located based on some

conditions rather than looking for it indiscriminately. We used a utility called Debug32 to

find 2-byte alternatives for 1-byte opcode. Figure 16 below illustrates how 1-byte

opcode is converted into 2-byte opcodes based on the type of registers used in the ADD

instruction.

Figure 16. Convert 1-byte opcode to 2-byte opcode for ADD r8/m8, imm8
Source: Author’s Research

1-byte opcode for

ADD r8/m8, imm8

(0x80)

Operand

DL (0xC0)

Operand

CL (0xC1)

Operand

BL (0xC2)

Operand

AH (0xC3)

Operand

DH (0xC4)

Operand

CH (0xC5)

Operand

BH (0xC6)

2-byte opcode

(0xC080)

2-byte opcode

(0xC180)

2-byte opcode

(0xC280)

2-byte opcode

(0xC380)

2-byte opcode

(0xC480)

2-byte opcode

(0xC580)

2-byte opcode

(0xC680)

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 31 Fall 2008

As figure 16 illustrates, in the instruction “ADD r8/m8, imm8”, ADD refers to actual

instruction or mnemonic, r8 refers to 8-bit register, m8 refers to 8-bit memory location

and imm8 refers to 8-bit constant. The register references in this instruction can be

substituted with any of the seven 8-bit registers (DL, CL, BL, AH, DH, CH, BH) to extend

1-byte opcode (0x80) into 2-byte opcodes.

After careful analysis of virus source files, we decided to collect all possible opcodes for

register and direct memory addressing instructions and only MFO opcodes for indexed

addressing instructions. Since including all the indexing instructions in the opcode table

introduces all possible byte values from 0x00 to 0xFF in the second byte of the opcode,

the probability of catching false positives is high. For example, binary opcode for

instruction “ADD r8/m8, r8” is 0x02. In general, 1-byte opcode 0x02 can be extended to

2-byte based on type of register or memory addressing used. If we have to include all

the indexing instructions for ADD, opcode table will require having all values from

0x0200 to 0x02FF. With the second byte position having a possibility of any value

between 00 to FF, any operand or sub-opcode with value 0x02 will be detected as ADD

regardless of the second byte.

Though effort has been made to change every 1-byte opcode to 2-byte, there are

instructions whose opcodes cannot be extended. In most cases, the instructions with

AL/AX/EAX as the first operand and imm8 as the second operand have 1-byte opcode.

There is no way to extend these 1-byte opcodes to 2-byte.For example, binary opcode

for instruction “ADD AL, imm8” is 0x04 which is an instruction referring the register AL

directly. There are totally 60 such 1-byte opcodes for 14 MFO instructions of which 35

MFO opcodes are included in the collection. The 35 opcodes collected are the 1-byte

opcodes of CMP, CALL, JMP, JNZ, JZ, POP and PUSH. The 1-byte opcodes for

remaining instructions are neglected to avoid False Positives (FP).Finally, we

maintained two sets of opcode list: 1-byte opcode list and two-byte opcode list.

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 32 Fall 2008

A high level flow involved in detecting MFO opcodes are shown in Figure 15 below.

Figure 17. Flow Diagram for MFO Opcode Detection
Source: Author’s Research

Read 2-bytes from virus file

Is 2-byte

opcode found

Read 2-bytes from virus file Translate 2-byte opcode into

mnemonic and write to opcode

sequence file

Is 1-byte

opcode

found?

Translate 1-byte opcode into

mnemonic and write to opcode

sequence file

No yes

No

yes

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 33 Fall 2008

Since most of the 1-byte instructions are PUSH and POP, we may end up catching

False Positives (FP) for these instructions. So, we checked for certain conditions while

detecting PUSH instructions based on the MFO pattern found in the virus assembly

files. The pattern found for PUSH instruction is that PUSH is always followed by another

PUSH or POP instruction. So, whenever 1-byte PUSH opcode is detected, the

subsequent byte is checked for PUSH or POP. If the subsequent byte is detected as

PUSH or POP, both of the bytes are added to observation sequence. Otherwise, both

bytes are skipped.

In addition to PUSH and POP, we added conditions to detect 1-byte JMP. We noticed

more FP for JMP because whenever our algorithm comes across 2-byte SUB, it is

detected as JMP because both instructions are sharing a common opcode. In this case,

let us consider the 1-byte opcodes 0xEB and 0xE9 for JMP and two-byte opcodes

0xEB83 and 0xE983 for SUB. As you notice here, both of the instructions are sharing

the same opcode 0xEB and 0xE9. To avoid such false positives, whenever we

encounter 0xEB and 0xE9, the consecutive byte is checked for 0x83. If the consecutive

byte is detected as 0x83, both of the bytes are skipped. Otherwise, 1-byte 0xEB or 0xE9

is written as JMP in the observation sequence.

Using our algorithm, the generated opcode sequence for each virus file was 95%

accurate with 5% being FP. It means that 20 out of 450 opcodes in the opcode

sequence are FP.

5.3 Creating Opcode sequence

To create opcode sequences, an input set is formed with executables of virus. Input set

is divided into three sets consisting of family viruses, non-family viruses and normal

files. The virus generated by a same generator belongs to the same family and is

referred as family virus. In contrast, virus generated by different generator belongs to

different family and is referred as non-family virus. Family viruses are named as

“NGVCKexes” consisting of 200 metamorphic virus variants generated by Next

Generation Virus Creation Kit (NGVCK) generator. Non- Family viruses are named as

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 34 Fall 2008

“OtherExes” consisting of 25 virus generated by Second Generation virus Generator

(G2) and Mass Code Generator (MPCGEN). It includes

• 15 virus variants generated by Second Generation virus generator (G2)

version 0.70a released in January 1993 representing non-family virus

• 10 virus variants generated by Mass Code Generator (MPCGEN) version 1.0

released in 1993 representing non family virus

The normal files are 40 random utility executables collected from Cygwin DLL (version

1.5.25).

Wong and Stamp collected 10 G2, 10 VCL32 and 5 MPCGEN as non-family virus.

VCL32 generated files has some properties that doesn’t allow us to include it as input

set for our program. VCL32 generated files have all the function definitions inside data

sections and only function calls in code section. Due to the reason that code section is

same in all VCL32 virus executables and our program extracts only the code section to

extract opcode sequences, we have not considered VCL32 files.

Once an input set is created, it is given as input to “create_obs.exe” program where

“Obs” stands for observation sequence or opcode sequence. The output of this program

is the data set and the compare set. A data set of 200 individual files each consisting of

corresponding opcode sequence is created and a compare set of 65 individual non-

family viruses and normal files consisting of corresponding opcode sequence is created.

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 35 Fall 2008

5.4 Training and Testing HMM

Training and testing followed the same methodology of (Wong, 2006). Five-fold cross

validation is applied to the data set and divided into train set and test set. So, train set

consists of 160 virus opcode sequence (four subsets each with 40 viruses) and test set

(one subset) consists of 40 virus opcode sequence. Each time, a different test set is

selected and other four subsets are used as train set. This process is repeated five

times. The length of each train file in data set ranges from 395 to 445 with an average

of 420. So, the typical length of concatenated 160 opcode sequence is in the range of

65,450 to 65,650 with an average of 65,550.

Once HMM is trained with the concatenated opcode sequence, a model is created for

every train set. After training, the test set and compare set is scored with corresponding

trained model. For each file in test set and compare set, Log Likelihood Per Opcode

(LLPO) is calculated as its score. For further details about LLPO, refer (Wong, 2006). A

threshold value is also calculated which is an average of minimum LLPO in data set and

maximum LLPO in compare set. The files with scores above (greater than) the

threshold are classified as virus and files with scores below (less than) the threshold are

classified as non- virus or non member. Training and classifying is explained in figure

18. The steps followed in training and classifying are

1. Train HMM with train set consisting of 160 opcode sequence files

2. Score and calculate LLPO for files in test set and compare set

3. Determine threshold value to classify member virus and non-members

4. Continue step 1 until all test sets are scored

These steps are diagrammatically shown in figure 18 (page 36).

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 36 Fall 2008

Figure 18. Training and classifying process
Source: Wong, 2006

6. Experiment Setup and Results

Section 6.1 describes the input data, platform setup and programming languages used

in the experiment. Section 6.2 provides the results obtained using our method which

eliminates disassembling and works on 14 MFO opcodes. Section 6.3 provides the

results obtained using Wong’s method which uses disassembling and works on all

opcodes in Intel instruction set. In the final section, we compare results of our method

with results of Wong’s method to test the accuracy and efficiency of our method.

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 37 Fall 2008

6.1 Experiment Setup

As discussed earlier, input set consists of three set of executables. First set consists of

200 NGVCK executables named as N0 to N199 (N stands for NGVCK), second set

consists of 15 G2 executables named as G2T0 to G2T14 and 10 MPCGEN executables

named as MPC0 to MPC9, and third set consists of 40 Cygwin executables named as

CYG0 to CYG39.

Extracted code section from each virus executable is collected in ICS (Individual Code

Section) Data Set and named as cs_n0 to cs_n199.

Data set consists of 200 NGVCK opcode sequence files named as OBSN0 to OBSN199

(OBS stands for observation sequence and N stands for NGVCK). Compare set

consists of 40 Cygwin opcode sequence files named as OBSC0 to OBSC39 (C stands

for Cygwin) and 25 non-family virus opcode sequence files named as OBSV0 to

OBSV24 (V stands for other virus).

TrainFile consists of 10 files, 5 being “alphabet” file consisting of distinct opcodes in

each train set and 5 being “in” (in stands for input) file consisting of concatenated 160

opcode sequence in test set. Each alphabet and input file is named 160_OBSN_E0 to

160_OBSN_E4. In the file name, 160 stands for number of opcode sequences being

concatenated, OBS stands for observation sequence, N stands for NGVCK and E0

stands for excluded set 0 which is the test set.

With number of states N being different each time ranging from 2 to 6, let us see how

models are named. There are 25 models created by HMM with 5 being created for each

state N. If a model is named as 160_OBSN_N2_E0, then

• 160 is the number of files in train set

• OBSN stands for NGVCK observation sequence

• N2 stands for number of states as 2

• E0 stands for test set 0

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 38 Fall 2008

Table 6 below shows the experiment platform and programming languages used.

Table 6. Experiment Setup

Platform Windows XP

Virus Generators NGVCK, G2 and MPCGEN

Programming Languages C, Ruby

Assembler & Linker TASM, TASM32, TLINK, TLINK32, MSVC 6.0,
Ruby

Utilities HexDump, Debug32

Source: Author’s Research

6.2 Experiment Results I

With N ranging from 2 to 6, and test sets ranging from 0 to 4, 25 models were created

with HMM.

Let us examine how the HMM separated family viruses from compare set files. All 25

models made a clear separation of scores between family viruses and compare set

files. Each model scored a data set consisting of 40 family viruses and compare set

consisting of 40 normal files and 25 non-family viruses. Table 7 shows LLPO scores of

40 family viruses and 40 normal files. The scores show that LLPO scores of family

viruses are -1.9 or greater and LLPO scores of normal files are -2.1 or lower.

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 39 Fall 2008

Table 7. LLPO scores of 40 family viruses and 40 normal files (compare set) using model

160_0BS_N2_E0.

 NGVCK Family Viruses Normal cygwin files

 Virus

Name

LLPO

 Virus

Name

LLPO

 File
Name

LLPO

 File
Name

LLPO

OBSN0

OBSN1

OBSN2

OBSN3

OBSN4

OBSN5

OBSN6

OBSN7

OBSN8

OBSN9

OBSN10

OBSN11

OBSN12

OBSN13

OBSN14

OBSN15

OBSN16

OBSN17

OBSN18

OBSN19

-1.91341

-1.91630

-1.94792

-1.78941

-1.81915

-1.88139

-1.89580

-1.85012

-1.86159

-1.91538

-1.83419

-1.78523

-1.88537

-1.82211

-1.90262

-1.91341

-1.87386

-1.81544

-1.91167

-1.90808

OBSN20

OBSN21

OBSN22

OBSN23

OBSN24

OBSN25

OBSN26

OBSN27

OBSN28

OBSN29

OBSN30

OBSN31

OBSN32

OBSN33

OBSN34

OBSN35

OBSN36

OBSN37

OBSN38

OBSN39

-1.85286

-1.85252

-1.87886

-1.94889

-1.91749

-1.84351

-1.82954

-1.87690

-1.85007

-1.89606

-1.93708

-1.87644

-1.80577

-1.84254

-1.86094

-1.92944

-1.90475

-1.82279

-1.86641

-1.89339

 OBSV0

 OBSV1

 OBSV2

 OBSV3

 OBSV4

 OBSV5

 OBSV6

 OBSV7

 OBSV8

 OBSV9

 OBSV10

 OBSV11

 OBSV12

 OBSV13

 OBSV14

 OBSV15

 OBSV16

 OBSV17

 OBSV18

 OBSV19

-2.15787

-2.10833

-2.48227

-2.49157

-2.39297

-2.53091

-2.75892

-2.75575

-2.48225

-2.46713

-2.48225

-2.46713

-2.37040

-2.71943

-2.71957

-2.49580

-2.51546

-2.39297

-2.71439

-2.44965

OBSV20

OBSV21

OBSV22

OBSV23

OBSV24

OBSV25

OBSV26

OBSV27

OBSV28

OBSV29

OBSV30

OBSV31

OBSV32

OBSV34

OBSV34

OBSV35

OBSV36

OBSV37

OBSV38

OBSV39

-2.52410

-2.58423

-2.42321

-2.44344

-2.51328

-2.63752

-2.21347

-2.46925

-2.54372

-2.46418

-2.50300

-2.85430

-2.47473

-2.24818

-2.49244

-2.49583

-2.69585

-2.49893

-2.53286

-2.56675

Source: Author

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 40 Fall 2008

Figure 19 below shows the scores of test set 1 and scores of compare set files for

model with three states; i.e., N=3 . There is a clear distinction of scores between family

and non-family viruses. Two of the normal files have scores closer to family virus scores

but doesn’t interleave the family virus scores.

-3

-2.8

-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

0 5 10 15 20 25 30 35 40

L
L

P
O

 S
co

re

Fiile Number

Test Set 1, N=3

Family Virus

Normal Files

Non Family Virus

Figure 19. Log Likelihood per Opcode (LLPO) of family viruses, non-family viruses and normal
files
Source: Author’s Research

The score results shown in the above diagram is the typical range of scores we

obtained for all models. Refer Appendix B to view the graphs for all states. The overall

results show that HMM is able to separate the family viruses from normal files and non-

family viruses regardless of number of states.

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 41 Fall 2008

To classify a file as family virus or non-member, we need to determine a cutoff or

threshold value. The files which are scored greater than threshold are considered as

family viruses and those which are scored lower than threshold is considered as non-

members. Threshold is calculated as the average of minimum score of family virus and

maximum score of non member files.

 Threshold = (MinDataLog + MaxCompareLog)/2

where

 MinDataLog is the minimum score of family virus

 MaxCompareLog is the maximum score of non member files

If score of a family virus is lower than threshold, it results in False Negative (FN)

prediction because a family virus is classified as non-member file. In other hand, if score

of a non-member file is greater than threshold, it results in False Positive (FP) prediction

because a non-member file is classified as family virus.

Table 8 shows the minimum score of NGVCK family viruses, maximum score of non-

member files and corresponding threshold assigned by each model. There are 25

different scores corresponding to 25 models. Two greatest and lowest thresholds are

marked bold in Table 8.

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 42 Fall 2008

Table 8. Minimum score of NGVCK family viruses, maximum score of non-member files and

threshold assigned by model

Test Set Min score of family

viruses

Max score of non

member files

Threshold

 N = 2

 N = 3

 Test Set 0 N = 4

 N = 5

 N = 6

-1.9488

-1.8745

-1.8633

-1.8230

-1.7994

-2.1083

-2.1342

-2.0813

-2.0417

-2.0841

-2.0286

-2.0044

-1.9723

-1.9323

-1.9448

 N = 2

 N = 3

 Test Set 1 N = 4

 N = 5

 N = 6

-1.9252

-1.8896

-1.9810

-1.9438

-1.9645

-2.1490

-2.1400

-2.1048

-2.1413

-2.1667

-2.0957

-2.0710

-2.0429

-2.0426

-2.0510

 N = 2

 N = 3

 Test Set 2 N = 4

 N = 5

 N = 6

-1.9381

-1.8905

-1.8632

-1.8381

-1.8158

-2.1456

-2.1396

-2.1055

-2.1418

-2.1345

-2.0438

-2.0151

-1.9843

-1.9900

-1.9752

 N = 2

 N = 3

 Test Set 3 N = 4

 N = 5

 N = 6

-1.9289

-1.8661

-1.8496

-1.8311

-1.8158

-2.1429

-2.1337

-2.0998

-2.1361

-2.1411

-2.0359

-1.9999

-1.9747

-1.9836

-1.9785

 N = 2

 N = 3

 Test Set 4 N = 4

 N = 5

 N = 6

-2.0463

-1.9836

-1.9500

-1.9185

-1.9368

-2.1441

-2.1357

-2.1000

-2.1362

-2.1457

-2.0952

-2.0596

-2.0250

-2.0274

-2.0413

Source: Author’s Research

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 43 Fall 2008

A single threshold should be determined from the 25 thresholds assigned by the model.

The determined threshold will act as a cutoff point for all the model scores. If the

determined threshold is too small, FP rate will be increased. If the determined threshold

is too large, FN rate will be increased. The final threshold which is greater than all non-

member files and lower than all family viruses will avoid more FP and FN. We

experimented with four different threshold values. The corresponding false prediction

rate can be viewed in Table 9 (page 50). The thresholds used for the experiment are

-1.93, -1.94, -2.07, -2.09. When the threshold is as large as -1.93, there are 15 FN. So,

only 25 of 40 family viruses are classified as family viruses and remaining 15 is

classified as normal file. Of the four thresholds used, only -2.09 and -2.07 results in

detection rate greater than 95%. -2.07 is considered as final threshold because the

number of false prediction is as low as 2 when compared to 4 for -2.09. The above false

prediction is FP resulting in classification of 2 non-member files as family viruses. Since

there are no FN when threshold is set to -2.07, detection rate is determined as 1.0000

where

 Detection Rate = TP / #FV

where

 TP - True Positives which means number of family viruses classified as family

viruses

 #FV - Total number of family viruses

In the above case where threshold is -2.07, all 40 family viruses are classified as family

viruses. So the detection rate is 1.000.

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 44 Fall 2008

Table 9. Thresholds and False Predictions

Test Set -1.93 -1.94 -2.07 -2.09

 FP FN Detect

Rate

FP FN Detect

Rate

FP FN Detect

Rate

FP FN Detect

Rate

 Test Set 0

 Test Set 1

 N = 2 Test Set 2

 Test Set 3

 Test Set 4

0

0

0

0

0

3

0

0

0

0

0.925

1.000

1.000

1.000

1.000

0

0

0

0

0

2

0

0

0

0

0.95

1.000

1.000

1.000

1.000

0

0

0

2

0

0

0

0

0

0

1.000

1.000

1.000

1.000

1.000

0

0

1

2

1

0

0

0

0

0

1.000

1.000

1.000

1.000

1.000

 Test Set 0

 Test Set 1

 N = 3 Test Set 2

 Test Set 3

 Test Set 4

0

0

0

0

0

1

1

1

1

1

0.975

0.975

0.975

0.975

0.975

0

0

0

0

0

1

1

1

0

1

0.975

0.975

0.975

1.000

0.975

0

0

0

0

0

0

0

0

0

0

1.000

1.000

1.000

1.000

1.000

0

0

0

0

0

0

0

0

0

0

1.000

1.000

1.000

1.000

1.000

 Test Set 0

 Test Set 1

 N = 4 Test Set 2

 Test Set 3

 Test Set 4

0

0

0

0

0

1

0

0

0

0

0.975

1.000

1.000

1.000

1.000

0

0

0

0

0

0

0

0

0

0

1.000

1.000

1.000

1.000

1.000

0

0

0

0

0

0

0

0

0

0

1.000

1.000

1.000

1.000

1.000

0

0

0

0

0

0

0

0

0

0

1.000

1.000

1.000

1.000

1.000

 Test Set 0

 Test Set 1

 N = 5 Test Set 2

 Test Set 3

 Test Set 4

0

0

0

0

0

2

0

0

0

0

0.95

1.000

1.000

1.000

1.000

0

0

0

0

0

0

0

0

0

0

1.000

1.000

1.000

1.000

1.000

0

0

0

0

0

0

0

0

0

0

1.000

1.000

1.000

1.000

1.000

0

0

0

0

0

0

0

0

0

0

1.000

1.000

1.000

1.000

1.000

 Test Set 0

 Test Set 1

 N = 6 Test Set 2

 Test Set 3

 Test Set 4

0

0

0

0

0

3

0

1

0

1

0.925

1.000

0.975

1.000

0.975

0

0

0

0

0

1

0

1

0

0

0.975

1.000

0.975

1.000

1.000

0

0

0

0

0

0

0

0

0

0

1.000

1.000

1.000

1.000

1.000

0

0

0

0

0

0

0

0

0

0

1.000

1.000

1.000

1.000

1.000

Source: Author’s Research

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 45 Fall 2008

Now, let us examine the training time of HMM to train each model. By default, HMM is

trained for 800 iterations. The running time of each iteration depends on number of

states N and length of observation sequence T. In our experiment, value of N ranges

from 2 to 6 and average observation sequence length is 65,450. The training time of

HMM ranges from 31 seconds for N =2 to 18 minutes for N = 6. Figure 20 below shows

the training time taken in seconds to create models with N ranging from 2 to 6.

Figure 20. Training time of 25 models for 800 iterations
Source: Author’s Research

Eventually, the trained model creates A, B and Pi matrices where A matrix is the state

transition probability, B matrix is the observation probability and Pi is the initial state

distribution. To examine the features of a virus, HMM observes the observation

sequence and plot the values in the B matrix. So, after a model is trained, HMM assigns

probability of occurrence of each opcode in particular state which can be viewed in B

matrix. Table 10 (page 52) shows transpose of B matrix for 2 states and test set 2.

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 46 Fall 2008

Table 10. Transposed B matrix for N = 2 and Test set 2

Opcode State 0 State 1

Call
add
cmp
jz
lea
mov
xor
jnz
jmp
pop
push
retn
and
test

0.04139156206336 0.10697308319445
0.03274170541118 0.19756946116809
0.00712020350956 0.0329235076862
0 0.0329235076852
0.03349106402365 0.02797364747966
0.7834975094335 0.19927252251573
0 0.02828160382626
0 0.04193156798704
0 0.05445961728529
0 0.03281600972899
0.06910259796872 0.11012487167077
0.03265535759005 0.06104544906463
0 0.01339285867145
0 0.0169689229576

Source: Author’s Research

In table 10 above, any state with zero value means that the corresponding opcode

doesn’t belong to that state. For example, opcode jz has zero value in state 0 and non-

zero value in state 1 which implies that jz occurs only in state 1.

In figure 21, the above table is plotted. The graph shows that opcode MOV occurs

mostly in state 0. Opcodes XOR, POP, AND, TEST, JZ, JNZ and JMP occur only in

state 1 and have zero probability in state 0. Rest of the opcodes occurs in both states.

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 47 Fall 2008

Figure 21. Probability distribution of observation symbols in each state for N = 2 and test set 2
Source: Author’s Research

6.3 Experiment Results II from Wong’s method

As discussed earlier, Wong’s method require disassembled executables as input. First,

all input executables should be disassembled. Using IdaPro, we disassembled the

same set of input files (200 NGVCK, 40 Cygwin, 15 G2 and 10 MPCGEN executable

files) used in our method and created respective asm files. We used the generated asm

files as input to the HMM. The typical observation sequence length of concatenated

opcode sequence ranges from 91,830 to 92,430 with an average of 92,130.

With N ranging from 2 to 6, and test sets ranging from 0 to 4, 25 models were created

with HMM. Let us examine how the HMM separated family viruses from compare set

files. All 25 models made a clear separation of scores between family viruses and

compare set files. Each model scored a data set consisting of 40 family viruses and

compare set consisting of 40 normal files and 25 non-family viruses.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

call add cmp jz lea mov xor jnz jmp pop push retn and test

Opcode

P
ro

b
a

b
il

it
y

State 1

State 0

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 48 Fall 2008

Test Set 1, N=3

-120

-100

-80

-60

-40

-20

0

0 5 10 15 20 25 30 35 40

Fiile Number

LL
P

O

S
co

re

Family Virus

Normal Files

Non Family Virus

Figure 22 shows the scores of test set 1 and scores of compare set files for model with

three states; i.e., N=3 . There is no clear distinction and some interleaving of scores

between family viruses and normal files. About three scores of normal files are

interleaving with scores of family viruses.

Figure 22. Log Likelihood per Opcode (LLPO) of family viruses, non-family viruses and normal
files
Source: Author’s Research

HMM is not able to determine a well defined threshold for any of the models, since the

maximum score of compare set is lesser than the minimum score of data set. For

example, for the model with N=3 and test set 1, the minimum score of data set is -5.9

and the maximum score of compare set is -3.0. Since, -5.9 is lesser than -3.0, it is not

able to find threshold. Also, due to the fact that all the models have interleaving scores,

HMM doesn’t find well defined threshold. So, after analyzing all the scores and keeping

the detection rate greater than 95%, we determine -5.4 as the threshold. With -5.4 as

threshold, there are 39 FP predictions and 7 FN predictions. Table 11 shows the FP and

FN for each model.

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 49 Fall 2008

Table 11. False Predictions for threshold = -5.4

Model -5.4

 FP FN Detection Rate

 Test Set 0

 Test Set 1

 N = 2 Test Set 2

 Test Set 3

 Test Set 4

1

3

3

3

3

0

1

0

0

0

1.000

0.975

1.000

1.000

1.000

 Test Set 0

 Test Set 1

 N = 3 Test Set 2

 Test Set 3

 Test Set 4

0

3

3

3

3

0

1

1

0

0

1.000

0.975

0.975

1.000

1.000

 Test Set 0

 Test Set 1

 N = 4 Test Set 2

 Test Set 3

 Test Set 4

1

3

3

3

3

0

1

0

0

0

1.000

0.975

1.000

1.000

1.000

 Test Set 0

 Test Set 1

 N = 5 Test Set 2

 Test Set 3

 Test Set 4

1

3

3

3

3

0

1

1

0

0

1.000

0.975

0.975

1.000

1.000

 Test Set 0

 Test Set 1

 N = 6 Test Set 2

 Test Set 3

 Test Set 4

1

3

1

1

1

0

1

0

0

0

1.000

0.975

1.000

1.000

1.000

Source: Author’s Research

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 50 Fall 2008

The diagrammatic representation of table 11 can be viewed in figure 23.

Figure 23. Number of false predictions at each state N
Source: Author’s Research

Now, let us examine the training time of HMM to train each model. In default, HMM is

trained iteratively for 800 iterations. The run time of each iteration depends on number

of states N and length of observation sequence T. In our experiment, value of N ranges

from 2 to 6 and average observation sequence length is 92,130. The training time of

HMM ranges from 5 mins for N =2 to 48 minutes For N = 6. Figure 23 shows the training

time taken in seconds to create models with N ranging from 2 to 6.

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 51 Fall 2008

 Figure 24. Training time of 25 models for 800 iterations
 Source: Author’s Research

6.4 Comparison of our method with Wong’s Method

To determine the efficiency and accuracy of our method, our results are compared with

Wong’s method. The observation sequence length and training time are compared in

figures 24 and 25 (page 58) respectively. The comparison shows that our method

produces smaller opcode sequence since we extracted only 14 MFO opcodes which

eventually results in lesser training time. Using our method, the training time is reduced

by 60%. So, our method shows significant improvement in efficiency.

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 52 Fall 2008

0

20000

40000

60000

80000

100000

2 3 4 5 6

Number of States N

O
p

co
d

e
 S

e
q

u
e

n
ce

 L
e

n
g

th

Our Method

Wong's Method

Figure 25. Comparison of opcode sequence length T in both methods
Source: Author’s Research

0

50

100

150

200

250

300

350

400

2 3 4 5 6

Number of States N

T
ra

in
in

g
 T

im
e

 i
n

 M
in

u
te

s

Our Method

Wong's method

Figure 26. Comparison of HMM training time in both methods
Source: Author’s Research

The total HMM training time is on average 4.5 hours for our method and 14.5 hours for

Wong’s method. Also, our program detects opcodes in the executables in less than 5

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 53 Fall 2008

0

1

2

3

4

5

1 2 3 4 5

Number of States

N
u

m
b

e
r

o
f

Fa
ls

e
 N

e
ga

ti
ve

 p
re

d
ic

ti
o

n
s

Wong's Method

Our Method

minutes in comparison to IDApro disassembling which takes on average 1.5 hours for

same set of files. For the entire experiment, our method took only 4.5 hours compared

to 16 hours for Wong’s method. In summary, the overall performance is improved by

70% with our method when compared to Wong’s method.

In addition to performance, there is a clear distinction of scores between family viruses

and non-members in our method. With threshold set at -2.07, there are only 2 FP

predictions and no FN predictions resulting in 100% detection rate. In Wong’s method,

there is some interleaving of scores between family viruses and normal files. With

threshold set at -5.4, there are 39 FP predictions and 7 FN predictions resulting in 97%

detection rate. This shows that accuracy is significantly improved in our method when

compared to Wong’s method. Figure 27 shows the number of false predictions in our

method and Wong’s method.

Figure 27. Comparison of False Negative Prediction

Source: Author’s research

Sharmidha Govindaraj Metamorphic Detection

CS298 Report 54 Fall 2008

7. Conclusion

Our method extracts code section from the virus binary files, detects MFO instruction

opcodes, forms opcode sequence, trains HMM, and scores test files. After careful

analysis of the virus files, 14 MFO instructions were identified (Billar) and corresponding

opcodes are collected to produce opcode table. The produced opcode table was used

in the process of forming opcode sequence. As the table is precise and concise, it helps

to improve overall efficiency significantly.

Our method achieved the primary goal of this work. It completely eliminated the manual

process involved in the disassembling phase, reduced the total running time by 70%,

and significantly improved overall efficiency.

8. Future Work

We extracted only the code segment from the executables. It can be expanded to

include data segment which will be challenging as it includes data in addition to the

function codes we are interested. Also, our opcode table consists of fewer number of 1-

byte opcodes that are searched indiscriminately resulting in ~3% false positives. It can

be further improved by analyzing the virus assembly files and determining conditions to

identify 1-byte opcodes.

Sharmidha Govindaraj Metamorphic Detection

CS298 Report i Fall 2008

Appendix A: Bibliography

Billar, D. Statistical Structures: Fingerprinting Malware for Classification and

 Analysis

 http://cs.wellesley.edu/~dbilar/papers/Bilar_OpcodeDistribution_ICGeS07.pdf

Jordan, M. (2002). Anti-Virus Research - Dealing with Metamorphism, Virus Bulletin

 http://ca.com/us/securityadvisor/documents/collateral.aspx?cid=48051

Kolter, J.Z., & Maloof,M.A.(2004) Learning to Detect Malicious Executables in the

 Wild, In ACM Proceedings of the Tenth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, 470–478

Matt Pietrek (2002) An In-Depth Look into the Win32 Portable Executable File

 Format

 Part 1: http://msdn2.microsoft.com/en-us/magazine/cc301805.aspx

 Part 2: http://msdn2.microsoft.com/en-us/magazine/cc301808.aspx

Microsoft Portable Executable and Common Object File Format Specification,

 Revision 8.1, February 2008

Mohammed, M. (2003) Zeroing in on metamorphic computer viruses, masters thesis,

 University of Louisiana at Lafayette

 www.cacs.louisiana.edu/~arun/papers/moin-mohammed-thesis-dec2003.pdf

Stamp, M. (2004) A revealing introduction to hidden Markov models

 www.cs.sjsu.edu/faculty/stamp/RUA/HMM.pdf

Stamp, M. (2006). Information Security: Principles and Practice, Wiley-Interscience

Szor, P. (2005). The Art of Computer Virus Research and Defense, Addison-Wesley

Szor, P., & Ferrie, P. (2001). Hunting for metamorphic, Symantec Security Response

 enterprisesecurity.symantec.com/PDF/metamorphic.pdf

Perriot, Ször, P., & Ferrie, P. (2002)Striking Similarites: Win32/Simile and

 Metamorphic

Turner, D. et al.,(2008). Symantec Global Internet Security Threat Report Trends for

July–December 07, Volume XII

Sharmidha Govindaraj Metamorphic Detection

CS298 Report ii Fall 2008

Wong, W. (2006). Analysis and detection of metamorphic computer viruses, masters

thesis, Department of Computer Science, San Jose State University

 www.cs.sjsu.edu/faculty/stamp/students/Report.pdf

Sharmidha Govindaraj Metamorphic Detection

CS298 Report iii Fall 2008

Appendix B: Converged HMM Matrices

Table B- 1. Coverged HMM Matrices for N = 2 and Test Set 0

 N=2, M=14, T=65538

 I 1.00000000000000 0.00000000000000

A 0.97529089931559 0.02470910068450
0.07294422965863 0.92705577034146

B

call
and
add
mov
cmp
jz
lea
retn
jnz
jmp
push
pop
xor
test

0.11056864271285 0.01032365432858
0.01145967815425 0.00000000000000
0.18800057580368 0.00039631434332
0.21328078353347 0.95689813171848
0.03301040979904 0.00000000000000
0.06610252853323 0.00000000000000
0.02880279179210 0.03238189960963
0.06832909701597 0.00000000000000
0.03691201145227 0.00000000000000
0.04826955343759 0.00000000000000
0.12836473711460 0.00000000000000
0.02806701922270 0.00000000000000
0.02414499033569 0.00000000000000
0.01468718109252 0.00000000000000

Table B- 2. Coverged HMM Matrices for N = 2 and Test Set 1

 N=2, M=14, T=65637

I

0.00000000000000 1.00000000000000

A

0.99023469357353 0.00976530642649
0.00517079384893 0.99482920615105

B

call
add
cmp
jz
lea
mov
xor
jnz
jmp
pop
push
retn
and
test

 0.04138172849122 0.10732144082279
0.03279131576133 0.19815336386213
0.00713632659984 0.03265250124626
0.00000000000000 0.07525014019944
0.03353125642709 0.02783380289300
0.78330672606554 0.20080176000483
0.00000000000000 0.02768944552793
0.00000000000000 0.04211587933240
0.00000000000000 0.05519274352290
0.00000000000000 0.03204064411089
0.06899283786000 0.11016834858514
0.03285980879498 0.06120574059315
0.00000000000000 0.01328628016508
0.00000000000000 0.01628790913408

Sharmidha Govindaraj Metamorphic Detection

CS298 Report iv Fall 2008

Table B- 3. Coverged HMM Matrices for N = 3 and Test Set 0

N=3, M=14, T=65538

I 0.00000000000000 1.00000000000000 0.00000000000000

A

0.70346079377318 0.29653920622679 0.00000000000000
0.07914393658555 0.91445966538834 0.00639639802613
0.00962002852435 0.00000000000000 0.99037997147564

B

call 0.18044259546229 0.08754297795188 0.04019049649330
and 0.00448429829006 0.01540292005154 0.00000000000000
add 0.03860749464897 0.24155284859017 0.03234418078082
mov 0.02469929232564 0.25302357242172 0.78967988859470
cmp 0.00315211876847 0.04250330460559 0.00707130426832
jz 0.01007609703007 0.09340170221697 0.00000000000000
lea 0.01364679545996 0.03187212163422 0.03343588672210
retn 0.07481661944953 0.05715118751145 0.03145387119567
jnz 0.00000000040173 0.05377853338374 0.00000000000000
jmp 0.01349456618584 0.06643437646140 0.00000000000000
push 0.49741215965854 0.00000000000000 0.06582437194508
pop 0.13409826140688 0.00222230493117 0.00000000000000
xor 0.00479799349001 0.03379418116171 0.00000000000000
test 0.00027170742202 0.02131996907845 0.00000000000000

Table B- 4. Coverged HMM Matrices for N = 3 and Test Set 1

N=3, M=14, T=65637

 I 1.00000000000000 0.00000000000000 0.00000000000000

A

0.70346079377318 0.29653920622679 0.00000000000000
0.07914393658555 0.91445966538834 0.00639639802613
0.00962002852435 0.00000000000000 0.99037997147564

B

call 0.08867756472923 0.17378980549424 0.03999032275435
add 0.24121738466127 0.03794667554559 0.03246059846073
cmp 0.04101184800289 0.00177478727713 0.00711025515134
jz 0.09241896276235 0.01063289662025 0.00000000000000
lea 0.03188667648912 0.01347452830663 0.03362093725516
mov 0.25488566270350 0.02044655468201 0.78988948068637
xor 0.03378862068065 0.00468934596868 0.00000000000000
jnz 0.05332496381131 0.00025874665049 0.00000000000000
jmp 0.06621929897186 0.01336997690319 0.00000000000000
pop 0.00276033294822 0.13469898314905 0.00000000000000
push 0.00000000000000 0.50857789021476 0.06538067722100
retn 0.05831881713061 0.07320156127166 0.03154772847102
and 0.01562700800442 0.00433427248924 0.00000000000000
test 0.01986285910459 0.00280397542706 0.00000000000000

Sharmidha Govindaraj Metamorphic Detection

CS298 Report v Fall 2008

Table B- 5. Coverged HMM Matrices for N = 4 and Test Set 0

N=4, M=14, T=65538

I 1.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000

A

 0.44045057521127 0.53973027295562 0.00000000000000 0.01981915183314
0.62792547362477 0.18618315452008 0.06922733549534 0.11666403635980
0.00000000000000 0.00000000000000 0.93607368937815 0.06392631062179
0.34692889141062 0.00000000000000 0.00000000000000 0.65307110858937

B

call 0.10436800534989 0.11822021256511 0.01027314932301 0.11612084862888
and 0.01349976044783 0.01245313695031 0.00000000000000 0.00522868141933
add 0.12144044526825 0.38719748586197 0.00028310901995 0.03441523285621
mov 0.43023595328126 0.00000428494713 0.94952037682505 0.02275571968959
cmp 0.06604882783370 0.00000000000000 0.00000000000000 0.00688387326382
jz 0.05917203374938 0.11726839434507 0.00000000000000 0.00244250914821
lea 0.02271307888903 0.04655973578208 0.03992336483199 0.00178900787395
retn 0.00000000261127 0.19447448317301 0.00000000000000 0.03303669112864
jnz 0.04796843467275 0.04358686152385 0.00000000000000 0.00038036414313
jmp 0.05028195162244 0.06789037513264 0.00000000000000 0.01315996772862
push 0.00000000000000 0.00000000000000 0.00000000000000 0.64946985760290
pop 0.01372077231028 0.00000000000000 0.00000000000000 0.10874111229134
xor 0.03990062711514 0.01234502971883 0.00000000000000 0.00557613422539
test 0.03065010684881 0.00000000000000 0.00000000000000 0.00000000000000

Table B- 6. Coverged HMM Matrices for N = 4 and Test Set 1

 N=4, M=14, T=65637

I 0.00000000000000 0.00000000000000 0.00000000000000 1.00000000000000

A

0.80883316869008 0.06320914331696 0.03559313923522 0.09236454875772
0.27355240608643 0.64178389969937 0.00000000000000 0.08466369421419
0.00000000000000 0.05901229599492 0.94098770400506 0.00000000000000
0.15518518785122 0.06191124864767 0.00000000000000 0.78290356350103

B

call 0.12685046243687 0.11199929673836 0.00853612550654 0.07280030502653
add 0.23323765834646 0.01851037291423 0.00000000000000 0.20897318307602
cmp 0.00051981304233 0.02147360786514 0.00000000000000 0.09134592516609
jz 0.00951432313309 0.01066382234148 0.00000000000000 0.19608849354750
lea 0.04699127266348 0.00000000000000 0.02799478588275 0.02116523853286
mov 0.41101127083640 0.00407452652008 0.96346908861070 0.05420224430150
xor 0.01041078461638 0.00447553751546 0.00000000000000 0.05970641577765
jnz 0.00847781584294 0.00075510653538 0.00000000000000 0.10764786651215
jmp 0.02473783521184 0.01120702111540 0.00000000000000 0.11054120772494
pop 0.00693284728153 0.12426754287804 0.00000000000000 0.00000000024898
push 0.00000000000000 0.65300481051350 0.00000000000000 0.00000000000000
retn 0.10885509567445 0.03444266696595 0.00000000000000 0.01633128223171
and 0.00772252853900 0.00335420883476 0.00000000000000 0.0230884120800
test 0.00473829237528 0.00177147926222 0.00000000000000 0.03810942577395

Sharmidha Govindaraj Metamorphic Detection

CS298 Report vi Fall 2008

Table B- 7. Coverged HMM Matrices for N = 5 and Test Set 0

N=5, M=14, T=65538

I 0.00000000000000 0.00000000000000 1.00000000000000 0.00000000000000 0.00000000000000

A

 0.9405214315319 0.00000000000000 0.00000000000000 0.05947856846809 0.00000000000000
 0.1129644367010 0.70298632458623 0.09892001655545 0.05531723665474 0.02981198550257
 0.0000000000000 0.00000000000000 0.79609378295742 0.06543191922219 0.13847429782046
 0.0000000000000 0.00000000000000 0.12417740830274 0.61586286167349 0.25995973002377
 0.0000000000000 0.16901480782446 0.10904631245805 0.06774692082023 0.65419195889725

B

call 0.01056237299509 0.00000000151958 0.08555187476068 0.09267881503836 0.20923462951049

and 0.00000000000000 0.01524718919793 0.02162219579171 0.00509363523682 0.00058701342624

add 0.00000000000000 0.45736257029521 0.21841193435418 0.03472486592215 0.08567076329304

mov 0.96541995985256 0.32951107919369 0.06029850748439 0.00000000000000 0.49279248754508

cmp 0.00000000000000 0.00000000000000 0.07921147534479 0.01712096169939 0.00492726978894

jz 0.00000000000000 0.01951138082775 0.17251284419881 0.00594289633036 0.00000000000000

lea 0.02401766715236 0.09208425527757 0.04100052758162 0.00191262451608 0.00436475670059

retn 0.00000000000000 0.04667059388427 0.02742919903069 0.02172002194133 0.15532636270807

jnz 0.00000000000000 0.00000000000000 0.10327137331020 0.00000000000000 0.00000000000000

jmp 0.00000000000000 0.01529291004272 0.09963315594656 0.00798581331095 0.02856757841450

push 0.00000000000000 0.00000000000000 0.00000000000000 0.68180914402532 0.00000000000000

pop 0.00000000000000 0.00000000000000 0.00131185622475 0.12620848711047 0.01281949026622

xor 0.00000000000000 0.01730019345761 0.05199841067901 0.00480273486877 0.00570964834679

test 0.00000000000000 0.00701982630365 0.03774664529266 0.00000000000000 0.00000000000000

Table B- 8. Coverged HMM Matrices for N = 5 and Test Set 1

 N=5, M=14, T=65637

I

0.00000000000000 1.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000

A

0.64262392510210 0.13305877596495 0.00000000000000 0.00000000000000 0.22431729893291

0.07029776430647 0.83694713112539 0.00000000000000 0.00000000000000 0.09275510456816

0.06593363140192 0.28377975032280 0.00686837680517 0.64341824147011 0.00000000000000

0.06153810783160 0.00000000000000 0.00000000000000 0.93846189216840 0.00000000000000

0.05127506960621 0.07036255303579 0.0573136406037 0.00000000000000 0.82104873675419

B

call 0.11414312762067 0.09178780664076 0.00000000000000 0.00000000000000 0.1212773367205

add 0.01839111716720 0.22139415067586 0.00000000000000 0.00000000000000 0.2162526399498

cmp 0.01902016801018 0.06980192768685 0.00000000000000 0.00000000000000 0.0010256620639

jz 0.00531781714927 0.15392450397864 0.00000000000000 0.00000000000000 0.0082371275539

lea 0.00107196862260 0.03455297850306 1.00000000000000 0.00000000000000 0.0000000000000

mov 0.00170007141622 0.09216764637624 0.00000000000000 1.00000000000000 0.51117361573010

xor 0.00372769157841 0.05030631107538 0.00000000000000 0.00000000000000 0.0078690458847

jnz 0.00000000014669 0.09281179061727 0.00000000000000 0.00000000000000 0.0000000000000

jmp 0.00986206845249 0.09799374859572 0.00000000000000 0.00000000000000 0.01665250939040

pop 0.12110891030325 0.00168433880047 0.00000000000000 0.00000000000000 0.00865846380033

push 0.66134786029249 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000

retn 0.04108521449830 0.04076323009906 0.00000000000000 0.00000000000000 0.09930854452460

and 0.00272393218346 0.02057069727973 0.00000000000000 0.00000000000000 0.00652867029279

test 0.00050005255879 0.03224086967097 0.00000000000000 0.00000000000000 0.00301638408870

Sharmidha Govindaraj Metamorphic Detection

CS298 Report vii Fall 2008

Table B- 9. Coverged HMM Matrices for N = 6 and Test Set 0

N=6, M=14, T=65538

I

0.00000000000000 1.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000

A

0.74654207880452 0.06015696292670 0.04465832656218 0.11643327108490 0.03220936062184 0.00000000000000
0.02060514556199 0.78892780154198 0.05844976057459 0.00000000000000 0.13201729232145 0.00000000000000
0.00000000000000 0.09872443224713 0.56509608986430 0.00000000000000 0.33617947788853 0.00000000000000
0.00000000000000 0.24213284361941 0.00710552510345 0.00000000000000 0.02958095288687 0.72118067839026
0.17068522563537 0.11758994250491 0.09298246310421 0.00000000000000 0.61874236875556 0.00000000000000
0.00000000000000 0.00000000000000 0.05739856445345 0.00000000000000 0.00000000000000 0.94260143554657

B

call 0.00000000000000 0.07963980903354 0.04474903481381 0.00000000000000 0.2726749917285 0.01054750258092
and 0.01379599847082 0.02259540505228 0.00558907307631 0.00000000000000 0.0004359338601 0.00000000000000
add 0.38675138566697 0.21282350028897 0.03986379770185 0.27309104766597 0.0739491617351 0.00000000000000
mov 0.42371179827650 0.05194811358821 0.00000000000000 0.00000000000000 0.4178819850247 0.97785286398327
cmp 0.00000000000000 0.08312910828087 0.01519714332158 0.00000000000000 0.0113982201845 0.00000000000000
jz 0.02253365781221 0.17868171055175 0.00200425425423 0.00000000000000 0.0083749572690 0.00000000000000
lea 0.00000000000000 0.03668926127124 0.00000000000000 0.72530432647419 0.0203587104885 0.01159963343582
retn 0.08894246264290 0.02453665903854 0.00000000000000 0.00000000000000 0.1450387602515 0.00000000000000
jnz 0.00000000000000 0.11272898499177 0.00000000000335 0.00000000000000 0.0000000000000 0.00000000000000
jmp 0.03388174710212 0.10379847545280 0.00779811304391 0.00160462585985 0.0197130677633 0.00000000000000
push 0.00000000000000 0.00000000000000 0.75945600474962 0.00000000000000 0.0000000000106 0.00000000000000
pop 0.00000000000000 0.00002764719045 0.11947591062144 0.00000000000000 0.0278200833764 0.00000000000000
xor 0.02053220621472 0.05507378660489 0.00586666841388 0.00000000000000 0.0023540626160 0.00000000000000
test 0.00985074381389 0.03832753865470 0.00000000000000 0.00000000000000 0.0000000656915 0.00000000000000

Sharmidha Govindaraj Metamorphic Detection

CS298 Report viii Fall 2008

Table B- 10. Coverged HMM Matrices for N = 6 and Test Set 1

 N=6, M=14, T=65637

I

1.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000 0.00000000000000

A

0.79902575937822 0.06884299516905 0.00000000000000 0.00395962775884 0.06656516435248 0.06160645334139

0.00004962226266 0.05402429439583 0.50987354539271 0.14656884949096 0.15294718165373 0.13653650680411

0.00000000000000 0.00000000000000 0.94315591906849 0.00000000000000 0.00000000000000 0.05684408093152

0.21315790437331 0.00000000000000 0.00000000000000 0.49708269885924 0.21023608262221 0.07952331414521

0.00001369512679 0.00000000000000 0.00000000000000 0.93787525245430 0.06052839468865 0.00158265773027

0.27132909596639 0.00000000000000 0.00000000000000 0.02130601346098 0.06433438422900 0.64303050634357

B

Call 0.13186949046900 0.00000000000000 0.01033245540491 0.0960162971704 0.0414220481090 0.11261960836740

Add 0.22409281811031 0.33135053413181 0.00000000000000 0.1833326392870 0.2675745644057 0.01850064871170

Cmp 0.00325621138480 0.00000000000000 0.00000000000000 0.0000000000000 0.2670579038232 0.01856606136724

Jz 0.01673161748286 0.00000000000000 0.00000000000000 0.2677942538386 0.0035045087466 0.00792665991814

Lea 0.00529078865858 0.66864946586819 0.01319064156814 0.0182121989531 0.0567012442008 0.00065911286116

Mov 0.43823259448582 0.00000000000000 0.97647690302694 0.0468122413825 0.0748684472089 0.00037493358845

Xor 0.01264762393210 0.00000000000000 0.00000000000000 0.0294594620569 0.1089340239043 0.00559008139898

Jnz 0.00000000000000 0.00000000000000 0.00000000000000 0.1741889487909 0.0000000000000 0.00262644652140

Jmp 0.03387824544811 0.00000000000000 0.00000000000000 0.1223503779078 0.0409882716703 0.01186122068469

Pop 0.00890641093102 0.00000000000000 0.00000000000000 0.0000000000000 0.0053662408508 0.11957216373433

Push 0.00000000000000 0.00000000000000 0.00000000000000 0.0000000000000 0.0000000000791 0.66099864418808

Retn 0.11157074655939 0.00000000000000 0.00000000000000 0.0308303051582 0.0137436214224 0.03607282455750

And 0.01034303858470 0.00000000000000 0.00000000000000 0.0286673453200 0.0000000000000 0.00333377158292

Test 0.00318041395330 0.00000000000000 0.00000000000000 0.0023359301341 0.1198391255784 0.00129782251794

Sharmidha Govindaraj Metamorphic Detection

CS298 Report ix Fall 2008

Appendix C: HMM Testing Results

Figure C- 1 LLPO Scores of Family Virus, Normal Files and Non-Family Virus for test set 0 and N =
2
Source: Author’s research

Figure C- 2 LLPO Scores of Family Virus, Normal Files and Non-Family Virus for test set 1 and N =
3
Source: Author’s research

-3

-2.8

-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

0 10 20 30 40

L
L

P
O

 S
co

re

File Number

Test Set 0, N=2

Family Virus

Normal Files

Non-Family Virus

-3

-2.8

-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

0 5 10 15 20 25 30 35 40

L
L

P
O

 S
co

re

Fiile Number

Test Set 1, N=3

Family Virus

Normal Files

Non Family Virus

Sharmidha Govindaraj Metamorphic Detection

CS298 Report x Fall 2008

Figure C- 3 LLPO Scores of Family Virus, Normal Files and Non-Family Virus for test set 3 and N =
4
Source: Author’s research

Figure C- 4 LLPO Scores of Family Virus, Normal Files and Non-Family Virus for test set 3 and N =
5
Source: Author

-3

-2.8

-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

0 5 10 15 20 25 30 35 40

L
L

P
O

 S
co

re

Fiile Number

Test Set 3, N=4

Family Virus

Normal Files

Non Family Virus

-3

-2.8

-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

0 5 10 15 20 25 30 35 40

L
L

P
O

 S
co

re

Fiile Number

Test Set 3, N=5

Family Virus

Normal Files

Non Family Virus

Sharmidha Govindaraj Metamorphic Detection

CS298 Report xi Fall 2008

Figure C- 5 LLPO Scores of Family Virus, Normal Files and Non-Family Virus for test set 4 and N =
6
Source: Author’s research

Test Set 4, N=6

-3

-2.8

-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

0 10 20 30 40

File Number

LL
P

O

S
co

re

Family Virus

Normal Files

Non Family Virus

